Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 686-718.doi: 10.1007/s10473-023-0214-4
Previous Articles Next Articles
Jin Tao, Zhenyu Yang, Wen Yuan†
Received:
2021-11-14
Revised:
2022-02-14
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Wen YUAN, E-mail: About author:
Jin Tao, E-mail: jintao@mail.bnu.edu.cn; Zhenyu Yang, E-mail: zhenyuyang@mail.bnu.edu.cn
Supported by:
Jin Tao, Zhenyu Yang, Wen Yuan. JOHN-NIRENBERG-Q SPACES VIA CONGRUENT CUBES*[J].Acta mathematica scientia,Series B, 2023, 43(2): 686-718.
[1] Berkovits L, Kinnunen J, Martell J M.Oscillation estimates, self-improving results and good-λ inequalities. J Funct Anal, 2016, 270(9): 3559-3590 [2] Betancor J J, Duong X T, Li J, et al.Product Hardy, BMO spaces and iterated commutators associated with Bessel Schrödinger operators. Indiana Univ Math J, 2019, 68(1): 247-289 [3] Bourdaud G, Lanza de Cristoforis M, Sickel W. Functional calculus on BMO and related spaces. J Funct Anal, 2002, 189(2): 515-538 [4] Bourdaud G, Moussai M, Sickel W.A necessary condition for composition in Besov spaces. Complex Var Elliptic Equa, 2020, 65(1): 22-39 [5] Bourdaud G, Moussai M, Sickel W.Composition operators acting on Besov spaces on the real line. Ann Mat Pura Appl, 2014, 193(5): 1519-1554 [6] Bourdaud G, Moussai M, Sickel W.Composition operators on Lizorkin-Triebel spaces. J Funct Anal, 2010, 259(5): 1098-1128 [7] Bourgain J, Brezis H, Mironescu P.A new function space and applications. J Eur Math Soc, 2015, 17(9): 2083-2101 [8] Brezis H.How to recognize constant functions. A connection with Sobolev spaces. Uspekhi Mat Nauk, 2002, 57(4): 59-74; Translation in Russian Math Surveys, 2002, 57(4): 693-708 [9] Brezis H, Van Schaftingen J, Yung P L.A surprising formula for Sobolev norms. Proc Natl Acad Sci USA, 2021, 118(8): e2025254118 [10] Campanato S.Proprietà di una famiglia di spazi funzionali. Ann Scuola Norm Sup Pisa Cl Sci, 1964, 18(3): 137-160 [11] Chen P, Duong X T, Li J, et al.BMO spaces associated to operators with generalised Poisson bounds on non-doubling manifolds with ends. J Differential Equations, 2021, 270: 114-184 [12] Chen P, Duong X T, Song L, Yan L.Carleson measures, BMO spaces and balayages associated to Schrödinger operators. Sci China Math, 2017, 60(11): 2077-2092 [13] Dafni G, Hytönen T, Korte R, Yue H.The space JNp: Nontriviality and duality. J Funct Anal, 2018, 275(3): 577-603 [14] Dafni G, Xiao J.Some new tent spaces and duality theorems for fractional Carleson measures and $Q_{\alpha}(\mathbb{R}^{n})$. J Funct Anal, 2004, 208(2): 377-422 [15] Duong X T, Li H, Li J, Wick B D.Lower bound of Riesz transform kernels and commutator theorems on stratified nilpotent Lie groups. J Math Pures Appl, 2019, 124: 273-299 [16] Duong X T, Li J, Sawyer E, et al.A two weight inequality for Calderón-Zygmund operators on spaces of homogeneous type with applications. J Funct Anal, 2021, 281(9): 109190 [17] Duong X T, Li J, Wick B D, Yang D. Characterizations of product Hardy spaces in Bessel setting. J Fourier Anal Appl, 2021, 27(2): Art 24 [18] Duong X T, Yan L.Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J Amer Math Soc, 2015, 18(4): 943-973 [19] Essén M, Janson S, Peng L, Xiao J.Q spaces of several real variables. Indiana Univ Math J, 2000, 49(2): 575-615 [20] Jia H, Tao J, Yang D, et al.Special John-Nirenberg-Campanato spaces via congruent cubes. Sci China Math, 2022, 65(2): 359-420 [21] Jia H, Tao J, Yang D, et al. Boundedness of Calderón-Zygmund operators on special John-Nirenberg- Campanato and Hardy-type spaces via congruent cubes. Anal Math Phys, 2022, 12(1): Art 15 [22] Jia H, Tao J, Yang D, et al.Boundedness of fractional integrals on special John-Nirenberg-Campanato and Hardy-type spaces via congruent cubes. Fract Calc Appl Anal, 2022, 25(6): 2446-2487 [23] Jia H, Yang D, Yuan W, Zhang Y. Estimates for Littlewood-Paley operators on ball Campanato-type function spaces. Results Math, 2023, 78(1): Art 37 [24] John F, Nirenberg L.On functions of bounded mean oscillation. Comm Pure Appl Math, 1961, 14: 415-426 [25] Koskela P, Xiao J, Zhang Y, Zhou Y.A quasiconformal composition problem for the Q-spaces. J Eur Math Soc, 2017, 19(4): 1159-1187 [26] Li J,Wick B D.Characterizations of $H^{1}_{\Delta N}(\mathbb{R}^{n})$ and $BMO_{\Delta N}(\mathbb{R}^{n})$ via weak factorizations and commutators. J Funct Anal, 2017, 272(12): 5384-5416 [27] Peng L Z, Yang Q X.Predual spaces for Q spaces. Acta Math Sci, 2009, 29B(2): 243-250 [28] Reimann H M.Functions of bounded mean oscillation and quasiconformal mappings. Comment Math Helv, 1974, 49: 260-276 [29] Runst T, Sickel W.Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Berlin: Walter de Gruyter, 1996 [30] Tao J, Xue Q, Yang D, Yuan W. XMO and weighted compact bilinear commutators. J Fourier Anal Appl, 2021, 27(3): Art 60 [31] Tao J, Yang D, Yuan W.A survey on function spaces of John-Nirenberg type. Mathematics, 2021, 9(18): 2264 [32] Tao J, Yang D, Yuan W.Vanishing John-Nirenberg spaces. Adv Calc Var, 2022, 15(4): 831-861 [33] Tao J, Yang D, Yuan W.John-Nirenberg-Campanato spaces. Nonlinear Anal, 2019, 189: 111584 [34] Xiao J.$Q_{\alpha}$ Analysis on Euclidean Spaces. Berlin: De Gruyter, 2019 [35] Xiao J.The transport equation in the scaling invariant Besov or Essén-Janson-Peng-Xiao space. J Differential Equations, 2019, 266(11): 7124-7151 [36] Xiao J, Zhou Y.A reverse quasiconformal composition problem for $Q_{\alpha}(\mathbb{R}^{n})$. Ark Mat, 2019, 57(2): 451-469 [37] Yang S, Chang D C, Yang D, Yuan W.Weighted gradient estimates for elliptic problems with Neumann boundary conditions in Lipschitz and (semi-)convex domains. J Differential Equations, 2020, 268(6): 2510-2550 [38] Yue H.A fractal function related to the John-Nirenberg inequality for $Q_{\alpha}(\mathbb{R}^{n})$. Canad J Math, 2010, 62(5): 1182-1200 [39] Yue H, Dafni G.A John-Nirenberg type inequality for $Q_{\alpha}(\mathbb{R}^{n})$. J Math Anal Appl, 2009, 351(1): 428-439 |
[1] | Kehe ZHU. THE BEREZIN TRANSFORM AND ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(6): 1839-1858. |
[2] | Yuxia LIANG. THE PRODUCT OPERATOR BETWEEN BLOCH-TYPE SPACES OF SLICE REGULAR FUNCTIONS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1606-1618. |
[3] | M. O. AGWANG, J. O. BONYO. SPECTRA OF COMPOSITION GROUPS ON THE WEIGHTED DIRICHLET SPACE OF THE UPPER HALF-PLANE [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1739-1752. |
[4] | Yunbai DONG, Pei-Kee LIN, Bentuo ZHENG. ON BANACH-STONE TYPE THEOREMS IN UNIFORM MULTIPLICATIVE SUBGROUPS OF C(K)-SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1912-1920. |
[5] | Jasbir Singh MANHAS, Ruhan ZHAO. PRODUCTS OF WEIGHTED COMPOSITION AND DIFFERENTIATION OPERATORS INTO WEIGHTED ZYGMUND AND BLOCH SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1105-1120. |
[6] | Maofa WANG, Xingxing YAO, Fangwen DENG. WEIGHTED COMPOSITION OPERATORS ON THE HILBERT SPACE OF DIRICHLET SERIES [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1427-1440. |
[7] | Shenlian LI, Xuejun ZHANG, Si XU. THE COMPACT COMPOSITION OPERATOR ON THE μ-BERGMAN SPACE IN THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2017, 37(2): 425-438. |
[8] | Jasbir Singh MANHAS, Ruhan ZHAO. ESSENTIAL NORMS OF PRODUCTS OF WEIGHTED COMPOSITION OPERATORS AND DIFFERENTIATION OPERATORS BETWEEN BANACH SPACES OF ANALYTIC FUNCTIONS [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1401-1410. |
[9] | D. SENTHILKUMAR, P. CHANDRA KALA. TENSOR SUM AND DYNAMICAL SYSTEMS [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1935-1946. |
[10] | CHEN Zhi-Hua, JIANG Liang-Mei, YAN Qi-Ming. AN UPPER BOUND OF THE ESSENTIAL NORM OF COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1145-1156. |
[11] | Dai-Ji-Neng, OUYANG Cai-Heng. COMPOSITION OPERATORS BETWEEN BLOCH TYPE SPACES IN THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2014, 34(1): 73-81. |
[12] | LIU Xiao-Song, LOU Zeng-Jian. WEIGHTED COMPOSITION OPERATORS ON WEIGHTED DIRICHLET SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(4): 1119-1126. |
[13] | JIANG Liang-Ying, OUYANG Cai-Heng. COMPACT DIFFERENCES OF COMPOSITION OPERATORS ON HOLOMORPHIC FUNCTION SPACES IN THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1679-1693. |
[14] | DAI Ji-Neng, OUYANG Cai-Heng. COMPACT COMPOSITION OPERATORS ON GENERALIZED LIPSCHITZ SPACES [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1347-1356. |
[15] | LONG Su-Juan. ON COMPACT COMPOSITION OPERATORS ON A CLASS OF HOLOMORPHIC FUNCTION SPACES OVER THE UNIT BALL IN Cn [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1367-1376. |
|