[1] Gong S. The Bieberbach Conjecture. International Press. Providence RI:Amer Math Soc, 1999
[2] Gong S. Convex and Starlike Mappings in Several Complex Variables (in Chinese). 2nd ed. Beijing:Science Press, 2003
[3] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York:Marcel Dekker, 2003
[4] Hörmander L. On a theorem of Graced. Math Scand, 1954, 2:55-64
[5] Honda T. The growth theorem for k-fold symmetric convex mappings. Bull London Math Soc, 2002, 34:717-724
[6] Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces. Acta Math Sinica, 1995, 38(2):234-241(in Chinese)
[7] Liu X S. On the quasi-convex mappings on the unit polydisk in Cn. J Math Anal Appl, 2007, 335:43-55
[8] Liu X S, Liu M S. Quasi-convex mappings of order α on the unit polydisk in Cn. Rocky Mountain J Math, 2010, 40:1619-1644
[9] Liu X S, Liu T S. The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in Cn. Chin Ann Math, 2011, 32B:241-252
[10] Liu X S, Liu T S. The sharp estimate of the third homogeneous expansion for a class of starlike mappings of order α on the unit polydisk in Cn. Acta Math Sci, 2012, 32B:752-764
[11] Liu X S, Liu T S, Xu Q H. A proof of a weak version of the Bieberbach conjecture in several complex variables. Sci China Math, 2015, 58:2531-2540
[12] Robertson M S. On the theory of univalent functions. Ann Math, 1936, 37:374-408
[13] Roper K A, Suffridge T J. Convexity properties of holomorphic mappings in Cn. Trans Amer Math Soc, 1999, 351:1803-1833
[14] Zhang W J, Liu T S. The growth and covering theorems for quasi-convex mappings in the unit ball of a complex Banach space. Sci China Ser A-Math, 2002, 45:1538-1547 |