Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (6): 2183-2197.doi: 10.1007/s10473-021-0623-1
• Articles • Previous Articles Next Articles
Liming WU
Received:
2021-05-26
Revised:
2021-10-13
Online:
2021-12-25
Published:
2021-12-27
CLC Number:
Liming WU. ENTROPICAL OPTIMAL TRANSPORT, SCHRÖDINGER'S SYSTEM AND ALGORITHMS[J].Acta mathematica scientia,Series B, 2021, 41(6): 2183-2197.
[1] | Altschuler J, Weed J, Rigollet Ph. Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration. Advances in Neural Information Processing Systems, 2017, 30:1964-1974 |
[2] | Beurling A. An automorphism of product measures. Ann Math, 1960, 72:189-200 |
[3] | Birkhoff G. Extensions of Jentzsch's theorem. Transactions of the American Mathematical Society, 1957, 85(1):219-227 |
[4] | Brenier Y. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 1991, 44(4):375-417 |
[5] | Brualdi R A. Combinatorial Matrix Classes. Volume 108. Cambridge University Press, 2006 |
[6] | Caffarelli L. The Monge-Ampère equation and optimal transportation, an elementary review//Lecture Notes in Mathematics, Springer-Verlag, 2003:1-10 |
[7] | Cheng L Y, Li R N, Wu L. Ricci curvature and W1-exponential convergence of Markov processes on graphs. Preprint 2015, in the Ph.D theses of Cheng and Li at AMSS, Chinese Academy of Sciences 2017 |
[8] | Chung F R K. Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, 92. Providence, RI:American Mathematical Society, 1997 |
[9] | Courty N, Flamary R, Tuia D, Corpetti T. Optimal transport for data fusion in remote sensing//IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016:3571-3574 |
[10] | Cruzeiro A B, Wu L, Zambrini J C. Bernstein processes associated with a Markov process//Rebolledo R, ed. Stochastic Analysis and Mathematical Physics. ANESTOC'98, Proceedings of the Third International Workshop (Boston) Trends in Mathematics. Birkhäuser, 2000:41-71 |
[11] | Csiszar I. I-divergence geometry of probability distributions and minimization problems. Annals of Probability, 1975, 3(1):146-158 |
[12] | Cuturi M. Sinkhorn distances:lightspeed computation of optimal transport. Advances in Neural Information Processing Systems, 2013, 26:2292-2300 |
[13] | Dantzig G B. Programming of interdependent activities:II mathematical model. Econometrica, 1949, 17(3/4):200-211 |
[14] | Dantzig G B. Application of the simplex method to a transportation problem. Activity Analysis of Production and Allocation, 1951, 13:359-373 |
[15] | Delon J. Midway image equalization. Journal of Mathematical Imaging and Vision, 2004, 21(2):119-134 |
[16] | Di Marino S, Gerolin A. An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm. Journal of Scientific Computing, 2020, 85(2):27 |
[17] | El Moselhy T A, Marzouk Y M. Bayesian inference with optimal maps. Journal of Computational Physics, 2012, 231(23):7815-7850 |
[18] | Erlander S. Optimal Spatial Interaction and the Gravity Model. Volume 173. Springer-Verlag, 1980 |
[19] | Erlander S, Stewart N F. The Gravity Model in Transportation Analysis:Theory and Extensions. 1990 |
[20] | Franklin J, Lorenz J. On the scaling of multidimensional matrices. Linear Algebra and its Applications, 1989, 114:717-735 |
[21] | Frisch U, Matarrese S, Mohayaee R, Sobolevski A. A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature, 2002, 417(6886):260-262 |
[22] | Galichon A, Salanié B. Matching with trade-offs:revealed preferences over competing characteristics. CEPR Discussion Paper No DP7858, 2010 |
[23] | Galichon A. Optimal Transport Methods in Economics. Princeton University Press, 2016 |
[24] | Genevay A, Cuturi M, Peyré G, Bach F. Stochastic optimization for large-scale optimal transport. Advances in Neural Information Processing Systems, 2016:3440-3448 |
[25] | Graham C, Talay D. Stochastic Simulation and Monte Carlo Methods:Mathematical Foundations of Stochastic Simulation. Stochastic Medelling and Applied Probability 68. Springer, 2013 |
[26] | Gutierrez J, Rabin J, Galerne B, Hurtut T. Optimal patch assignment for statistically constrained texture synthesis//International Conference on Scale Space and Variational Methods in Computer Vision. Springer, 2017:172-183 |
[27] | Kantorovich L. On the transfer of masses (in russian). Doklady Akademii Nauk, 1942, 37(2):227-229 |
[28] | Kim S, Ma R, Mesa D, Coleman T P. Efficient Bayesian inference methods via convex optimization and optimal transport//IEEE International Symposium on Information Theory. IEEE, 2013:2259-2263 |
[29] | Kolouri S, Park S R, Thorpe M, Slepcev D, Rohde G K. Optimal mass transport:signal processing and machine-learning applications. IEEE Signal Processing Magazine, 2017, 34(4):43-59 |
[30] | Kosowsky J J, Yuille A L. The invisible hand algorithm:Solving the assignment problem with statistical physics. Neural Networks, 1994, 7(3):477-490 |
[31] | Lai R, Zhao H. Multiscale nonrigid point cloud registration using rotation invariant sliced-wasserstein distance via laplace-beltrami eigenmap. SIAM Journal on Imaging Sciences, 2017, 10(2):449-483 |
[32] | Léonard Ch. From the Schrödinger problem to the Monge-Kantorovich problem. Journal of Functional Analysis, 2012, 262(4):1879-1920 |
[33] | Léonard Ch. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Continuous Dynamical Systems Series A, 2014, 34(4):1533-1574 |
[34] | Li P, Wang Q, Zhang L. A novel earth mover's distance methodology for image matching with Gaussian mixture models//Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2013:1689-1696 |
[35] | Liu W, Ma Y T, Wu L. Spectral gap, isoperimetry and concentration on trees. Sci China Math, 2016, 59(3):539-556 |
[36] | Ma Y T, Wang R, Wu L. Logarithmic Sobolev, isoperimetry and transport inequalities on graph. Acta Mathematica Sinica, English Series, 2016, 32(10):1221-1236 |
[37] | Makihara Y, Yagi Y. Earth mover's morphing:Topology-free shape morphing using cluster-based EMD flows//Asian Conference on Computer Vision. Springer, 2010:202-215 |
[38] | Mathon B, Cayre F, Bas P, Macq B. Optimal transport for secure spread-spectrum watermarking of still images. IEEE Transactions on Image Processing, 2014, 23(4):1694-1705 |
[39] | Mikami T. Monge's problem with a quadratic cost by the zero-noise limit of h-path processes. Probab Theory Related Fields, 2004, 129(2):245-260 |
[40] | Mikami T. Stochastic Optimal Transportation:Stochastic Control with Fixed Marginals. Springer, 2021 |
[41] | Monge G. Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie Royale des Sciences, 1781:666-704 |
[42] | Museyko O, Stiglmayr M, Klamroth K, Leugering G. On the application of the Monge-Kantorovich problem to image registration. SIAM Journal on Imaging Sciences, 2009, 2(4):1068-1097 |
[43] | Oliver D S. Minimization for conditional simulation:Relationship to optimal transport. Journal of Computational Physics, 2014, 265:1-15 |
[44] | Peyré G, Cuturi M. Computational Optimal Transport:With Application in Data Science. Now Foundation and Trends, 2019 |
[45] | Peyré G, Cuturi M. Computational optimal transport. Foundations and Trends in Machine Learning, 2019, 11(5/6):355-607 |
[46] | Rachev S T, Rüschendorf L. Mass Transportation Problems:Volume I:Theory. Springer Science & Business Media, 1998 |
[47] | Rachev S T, Rüschendorf L. Mass Transportation Problems:Volume II:Applications. Springer Science & Business Media, 1998 |
[48] | Reich S. A nonparametric ensemble transform method for Bayesian inference. SIAM Journal on Scientific Computing, 2013, 35(4):A2013-A2024 |
[49] | Rüschendorf L. Convergence of the iterative proportional fitting procedure. Annals of Statistics, 1995, 23(4):1160-1174 |
[50] | Samelson H, et al. On the Perron-Frobenius theorem. Michigan Mathematical Journal, 1957, 4(1):57-59 |
[51] | Santambrogio F. Optimal Transport for Applied Mathematicians. Birkhauser, 2015 |
[52] | Schrödinger E.Über die Umkehrung der Naturgesetze. Sitzungsberichte Preuss Akad Wiss Berlin Phys Math, 1931, 144:144-153 |
[53] | Sinkhorn R. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematical Statististics, 1964, 35:876-879 |
[54] | Su Z, Wang Y, Shi R, Zeng W, Sun J, Luo F, Gu X. Optimal mass transport for shape matching and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(11):2246-2259 |
[55] | Villani C. Topics in Optimal Transportation. Graduate Studies in Mathematics Series. American Mathematical Society, 2003 |
[56] | Villani C. Optimal Transport:Old and New, 338. Springer Verlag, 2009 |
[57] | Wang W, Ozolek J A, Slepčev D, Lee A B, Chen C, Rohde G K. An optimal transportation approach for nuclear structure-based pathology. IEEE Transactions on Medical Imaging, 2011, 30(3):621-631 |
[58] | Wang W, Slepčev D, Basu S, Ozolek J A, Rohde G K. A linear optimal transportation framework for quantifying and visualizing variations in sets of images. International Journal of Computer Vision, 2013, 101(2):254-269 |
[59] | Zhu L, Yang Y, Haker S, Tannenbaum A. An image morphing technique based on optimal mass preserving mapping. IEEE Transactions on Image Processing, 2007, 16(6):1481-1495 |
No related articles found! |
|