[1] Abate M. Iteration Theory of Holomorphic Maps on Taut Manifolds. Rende, Cosenza:Mediterranean Press, 1989 [2] Baracco L, Zaitsev D, Zampieri G. A Burns-Krantz type theorem for domains with corners. Math Ann, 2006, 336:491-504 [3] Bracci F, Patrizio G. Monge-Ampère foliations with singularities at the boundary of strongly convex domains. Math Ann, 2005, 332:499-522 [4] Bracci F, Patrizio G, Trapani S. The pluricomplex Poisson kernel for strongly convex domains. Trans Amer Math Soc, 2009, 361:979-1005 [5] Chang C H, Hu M C, Lee H P. Extremal analytic discs with prescribed boundary data. Trans Amer Math Soc, 1988, 310:355-369 [6] Huang X. A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications. Illinois J Math, 1994, 38:283-302 [7] Huang X. A non-degeneracy property of extremal mappings and iterates of holomorphic self-mappings. Ann Scuola Norm Sup Pisa Cl Sci, 1994, 21:399-419 [8] Huang X, Wang W. Complex geodesics and complex Monge-Ampére equations with boundary singularity. Math Ann, 2020(in press) [9] Lempert L. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull Soc Math France, 1981, 109:427-474 [10] Lempert L. Intrinsic distances and holomorphic retracts//Complex Analysis and Applications '81(Varna, 1981). Sofia:Publ House Bulgar Acad Sci, 1984:341-364 [11] Lempert L. A precise result on the boundary regularity of biholomorphic mappings. Math Z, 1986, 193:559-579; Erratum, 1991, 206:501-504 [12] Poletsky E A. The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk. Michigan Math J, 1983, 30:317-333 |