数学物理学报(英文版) ›› 2023, Vol. 43 ›› Issue (4): 1767-1780.doi: 10.1007/s10473-023-0418-7
Liangzhen LEI1, Yutao MA2,†
Liangzhen LEI1, Yutao MA2,†
摘要: Let λ=(λ1,⋯,λn) be β-Jacobi ensembles with parameters p1,p2,n and β, with β varying with n. Set γ=limn→∞np1 and σ=limn→∞p1p2. Suppose that limn→∞lognβn=0 and 0≤σγ<1. We offer the large deviation for p1+p2p1max1≤i≤nλi when γ>0 via the large deviation of the corresponding empirical measure and via a direct estimate, respectively, when γ=0.