[1] |
Belfadli R, Boulanba L, Mellouk M. Moderate deviations for a stochastic Burgers equation. arXiv:1807.09117
|
[2] |
Bousé M, Dupuis P. A variational representation for certain functionals of Brownian motion. Ann Probab, 1998, 26:1641-1659
|
[3] |
Budhiraja A, Dupuis P. A variational representation for positive functional of infnite dimensional Brownian motions. Probab Math Statist, 2000, 20:39-61
|
[4] |
Budhiraja A, Dupuis P, Ganguly A. Moderate deviation principle for stochastic differential equations with jumps. Ann Probab, 2016, 44:1723-1775
|
[5] |
Budhiraja A, Dupuis P, Maroulas V. Large deviations for infinite dimensional stochastic dynamical systems. Ann Probab, 2008, 36:1390-1420
|
[6] |
Cardon-Weber C. Large deviations for Burgers' type SPDE. Stochastic Process Appl, 1999, 84:53-70
|
[7] |
Dembo A, Zeitouni O. Large Deviations Techniques and Applications. Applications of Mathematics 38. 2nd ed. Berlin Heidelberg:Springer-Verlag, 1998
|
[8] |
Dong Z, Xiong J, Zhai J, Zhang T. A moderate deviation principle for 2-D stochastic Navier-Stokes equations drive Lévy noises. J Funct Anal, 2017, 272(1):227-254
|
[9] |
Foondun M, Setayeshgar L. Large deviations for a class of semilinear stochastic partial differential equations. Statist Probab Lett, 2017, 121:143-151
|
[10] |
Hall P, Schimek M. Moderate-deviation-based inference for random degeneration in paired rank lists. J Amer Statist Assoc, 2012, 107:661-672
|
[11] |
Gao F. Moderate deviations for a nonparametric estimator of sample coverage. Ann Statist, 2013, 41:641-669
|
[12] |
Gao F, Wang S. Asymptotic behaviors for functionals of random dynamical systems. Stoch Anal Appl, 2016, 34(2):258-277
|
[13] |
Gao F. Small perturbation cramer methods and moderate deviations for Markov processes. Acta Math Sci, 1995, 15(4):394-405
|
[14] |
Gao F, Jiang H, Wang B. Moderate deviations for parameter estimators in fractional Ornstein-Uhlenbeck process. Acta Math Sci, 2010, 30B(4):1125-1133
|
[15] |
Gyöngy I. Existence and uniqueness results for semilinear stochastic partial differential equations. Stochastic Process Appl, 1998, 73:271-299
|
[16] |
Ichikawa A. Some inequalities for martingales and stochastic convolutions. Stochastic Anal Appl, 1986, 4:329-339
|
[17] |
Li Y, Wang R, Yao N, Zhang S. A moderate deviation principle for stochastic Volterra equation. Statist Probab Lett, 2017, 122(10):79-85
|
[18] |
Klebaner F, Liptser R. Moderate deviations for randomly perturbed dynamical systems. Stochastic Process Appl, 1999, 80:157-176
|
[19] |
Setayeshgar L. Large deviations for a stochastic Burgers' equation. Commun Stoch Anal, 2014, 8:141-154
|
[20] |
Walsh J. An introduction to stochastic partial differential equations//Hennequin P L, eds. École d'été de Probabilités St. Flour XIV. Lect Notes Math, Vol 1180. Berlin:Springer, 1986
|
[21] |
Wang R, Zhai J, Zhang, T. A moderate deviation principle for 2-D stochastic Navier-Stokes equations. J Differential Equations, 2015, 258:3363-3390
|
[22] |
Wang R, Zhang T. Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Anal, 2015, 42:99-113
|
[23] |
Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl, 2007, 328:1075-1081
|