[1] Benyamini Y, Lindenstrauss J.Geometric Nonlinear Functional Analysis. Providence, RI: Amer Math Soc, 1991 [2] Cheng L X, Dai D X, Dong Y B, Zhou Y. Universal stability of Banach spaces for $\varepsilon$-isometries. Studia Math, 2014, 221: 141-149 [3] Cheng L X, Dong Y B. On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces. J Math Anal Appl, 2011, 377: 464-470 [4] Cheng L X, Dong Y B, Zhang W. On stability of nonlinear non-surjective $\varepsilon$-isometries of Banach spaces. J Funct Anal, 2013, 264: 713-734 [5] Cheng L X, Dong Y B. A note on the stability of nonsurjective $\varepsilon$-isometries of Banach spaces. Proc Amer Math Soc, 2020, 148: 4837-4844 [6] Cheng L X, Zhou Y. On perturbed metric-preserved mappings and their stability characterizations. J Funct Anal2014, 266: 4995-5015 [7] Dilworth S. Approximate isometries on finite-dimensional normed spaces. Bull London Math Soc, 1999, 31(4): 471-476 [8] Dutrieux Y, Lancien G. Isometric embeddings of compact spaces into Banach spaces. J Funct Anal, 2008, 255: 494-501 [9] Fernández-Polo F J, Peralta A M. Low rank compact operators and Tingley's problem. Adv Math, 2018, 338(7): 1-40 [10] Fernández-Polo F J, Peralta A M. On the extension of isometries between the unit spheres of a $C^*$-algebra and $B(H)$. Trans Amer Math Soc Ser B, 2018, 5: 63-80 [11] Figiel T. On non-linear isometric embeddings of normed linear spaces. Bull Acad Pol Sci Ser Math Astron Phys, 1968, 16: 185-188 [12] Fullerton R.Geometrical characterization of certain function spaces//Proc Inter Sympos Linear Spaces (Jerusalem, 1960). Jerusalem: Jerusalem Academic Press, 1961: 227-236 [13] Gevirtz J. Stability of isometries on Banach spaces. Proc Amer Math Soc, 1983, 89: 633-636 [14] Godefroy G, Kalton N J. Lipschitz-free Banach spaces. Studia Math, 2003, 159(1): 121-141 [15] Gruber P M. Stability of isometries. Trans Amer Math Soc, 1978, 245: 263-277 [16] Hardtke J D. Some remarks on generalised lush spaces. Studia Math, 2015, 231: 29-44 [17] Hyers D, Ulam S. On approximate isometries. Bull Amer Math Soc, 1945, 51: 288-292 [18] Igor A.Vestfrid, Stability of almost surjective $\varepsilon$-isometries of Banach spaces. J Funct Anal, 2015, 269: 2165-2170 [19] Igor A. Vestfrid, Hyers-Ulam stability of isometries and non-expansive maps between spaces of continuous functions. Proc Amer Math Soc, 2017, 145: 2481-2494 [20] Kadets V Martín M. Extension of isometries between unit spheres of finite-dimensional polyhedal Banach spaces. J Math Anal Appl,2012, 396: 441-447 [21] Kadets V, Zavarzina O. Generalized-lush spaces revisited. Annals of Functional Analysis, 2020, 11: 244-258 [22] Kalton N J. A remark on quasi-isometries. Proc Amer Math Soc, 2002, 131(4): 1225-1231 [23] Lima A. Intersection properties of balls and subspaces in Banach spaces. Trans Amer Math Soc, 1977, 227: 1-62 [24] Lima A. Intersection properties of balls in spaces of compact operators. Ann Inst Fourier(Grenoble), 1978, 28: 35-65 [25] Lindenstrauss J.Extension of Compact Operators. Providence, RI: Amer Math Soc, 1964 [26] Liu R, Zhang L. On extension of isometries and approximate isometries between unit spheres. J Math Anal Appl, 2009, 352: 749-761 [27] Lövblom G. Almost isometries on balls of $l_1$. Israel J Math, 1988, 63(2): 129-138 [28] Ma Y M. Isometries of the unit sphere. Acta Math Sci, 1992, 12(4): 366-373 [29] Mankiewicz P. On extension of isometries in normed spaces. Bull Acad Pol Sci, 1972, 20: 367-371 [30] Martín M. Banach spaces having the Radon-Nikodym property and numerical index 1. Proc Amer Math Soc,2003, 131: 3407-3410 [31] Martín M, Paya R. On CL-spaces and almost CL-spaces. Ark Mat,2004, 42: 107-118 [32] Matoušková E. Almost isometries of balls. J Funct Anal, 2002, 190: 507-525 [33] Mazur S, Ulam S. Sur les transformations isométriques d'espaces vectoriels normés. C R Acad Sci Paris, 1932, 194: 946-948 [34] Mazur S. Über konvexe Mengen in linearen normierten Ráumen. Studia Math, 1933, 4: 70-84 [35] Mori M, Ozawa N. Mankiewicz's theorem and the Mazur-Ulam property for $C^*$-algebras. Studia Math, 2020, 250: 265-281 [36] Omladič M, emrl P. On non-linear perturbations of isometries. Math Ann, 1995, 303: 617-628 [37] Peralta A M. A survey on Tingley's problem for operator algebras. Acta Sci Math (Szeged), 2018, 84: 81-123 [38] Qian S. $\varepsilon$-isometric embeddings. Proc Amer Math Soc, 1995, 123: 1797-1803 [39] Rassias Th M. Properties of isometric mappings. J Math Anal Appl, 1999, 235: 108-121 [40] Tan D N, Huang X J, Liu R. Generalized-lush spaces and the Mazur-Ulam property. Studia Math, 2013, 219(2): 139-153 [41] Tan D N, Liu R. A note on the Mazur-Ulam property of almost-CL-spaces. J Math Anal Appl, 2013, 405: 336-341 [42] Tingley D. Isometries of the unit spheres. Geom Dedicata, 1987, 22: 371-378 [43] Váisálá J. A survey of nearisometries. Rep Univ Jyváskylá, 2001, 83: 305-315 [44] Weaver N. Lipschitz Algebras. New Jersey: World Scientific, 2018 [45] Zhou Y, Zhang Z H, Liu C Y. Linearization of isometric embedding on Banach spaces. Studia Math, 2015, 230: 31-39 [46] Zhou Y, Zhang Z H, Liu C Y. On isometric representation subsets of Banach spaces. Bull Aust Math Soc, 2016, 93(3): 486-496 [47] Zhou Y, Zhang Z H, Liu C Y. On representation of isometric embeddings between Hausdorff metric spaces of compact convex subsets. Houston J Math, 2018, 44(3): 917-925 |