[1] Mazur S, Ulam S. Sur les transformationes isometriques d´espaces vectoriels normes. Comptes Rendus Acad
Sci Paris, 1932, 194: 946–948
[2] Mankiewicz P. On extension of isometries in normed linear spaces. Bull Acad Polon Sci S´er Sci Math Astronom Phys, 1972, 20: 367–371
[3] Tingley D. Isometries of the unit spheres. Geometriae Dedicata, 1987, 22: 371–378
[4] Ding G G. The isometric extension problem in the unit spheres of l p(Γ)(p > 1) type spaces. Science in China, Series A, 2003, 46(3): 333–338
[5] Ding G G. The representation theorem of onto isometric mappings between two unit spheres of l1(Γ) type spaces and the application to isometric extension problem. Acta Math Sinica, English Series, 2004, 20(6): 1089–1094
[6] Ding G G. The representation of onto isometric mappings between two spheres of l1-type spaces and the application on isometric extension problem. Sci China Ser A, 2004, 47(5): 722–729
[7] Ding G G. The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space. Sci China Ser A, 2002, 45(4): 479–483
[8] Fang X N, Wang J H. Extension of isometries between the unit spheres of normed space E and C(Ω). Acta Math Sinica, English Series, 2006, 22: 1819–1824
[9] Liu R. On extension of isometries between unit spheres of L1(Γ)-type space and a Banach space E. J Math Anal Appl, 2007, 333: 959–970
[10] Ding G G. On isometric extension problem between two unit spheres. Sci China Ser A, 2009, 52(10): 2069–2083
[11] Liu R, Zhang L. On extension of isometries and approximate isometries between unit spheres. J Math Anal Appl, 2009, 352: 749–761
[12] An G M. Isometries on unit spheres of (l n). J Math Anal Appl, 2005, 301: 249–254
[13] Hou Z B. The isometric extension of the into mapping between the unit spheres of ALp-spaces (1 < p < 1). Acta Math Sinica Chin Ser, 2007, 50(6): 1435–1440
[14] Fu X H. The isometric extension of the into mapping from the unit sphere S(E) to S(l∞(Γ)). Acta Math Sin Engl Ser, 2008, 24(9): 1475–1482
[15] Fang X N, Wang J H. Extension of isometries between unit spheres of normed space E and l1(Ω). Acta Math Sinica Chin Ser, 2008, 51(1): 24–28
[16] Ding G G. On linearly isometric extensions for 1-lipschitz mappings between unit spheres of ALp-spaces (2 < p). Acta Math Sin Engl Ser, 2010, 26(2): 331–336
[17] Wang R, Yi J J. On extension of 1-Lipschitz mappings between l1(Γ) type spaces. Acta Sci Nat Univ Nankai, 2010, 43(1): 17–19
[18] Yi J J, Wang R. On extension of isometries between strictly convex, smooth and reflex spaces. Journal of Mathematics in Practice and Theory, 2010, 40(2): 171–176
[19] Cheng L X, Dong Y B. On a generalized Mazur-Ulam question: Extension of isometries between unit
spheres of Banach spaces. J Math Anal Appl, 2011, 377: 464–470
[20] Ding G G. The isometric extension of an into mapping from the unit sphere S(l(??)) to the unit sphere
S(E). Acta Math Sci, 2009, 29B(3): 469–479
[21] Ding G G. Small into isomorphism from (c0) into C(
) type. Acta Math Sci, 2008, 28B(2): 307–314
[22] Ding G G. L(!, μ) cannot isometrically contain some three-dimensional subspaces of AM-spaces. Acta Math
Sci, 2007, 27B(2): 225–231 |