[1] Barnard R, FitzGerald C, Gong S. A distortion theorem for biholomorphic mappings in $\mathbb{C}^2$. Trans Am Math Soc, 1994, 344: 907-924 [2] Cartan H.Sur la possibilité détendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes// Montel P. Lecons sur les Fonctions Univalentes ou Multivalentes. Paris: Gauthier-Villars, 1933 [3] Chu C H, Hamada H, Honda T, Kohr G. Distortion theorems for convex mappings on homogeneous balls. J Math Anal Appl, 2010, 369: 437-442 [4] Chu C H, Hamada H, Honda T, Kohr G. Distortion for locally biholomorphic Bloch mappings on bounded symmetric domains. J Math Anal Appl, 2016, 441: 830-843 [5] Duren P L. Univalent Functions.New York: Springer-Verlag, 1983 [6] Gong S, Wang S K, Yu Q H. Biholomorphic convex mappings of ball in $\mathbb{C}^n$. Pacif J Math, 1993, 161: 287-306 [7] Gong S, Liu T S. Distortion theorems for biholomorphic convex mappings on bounded convex circular domains. Chin Ann Math Ser B, 1999, 20: 297-304 [8] Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canadian J Math, 2002, 54: 324-351 [9] Graham I, Hamada H, Kohr G. Loewner chains, Bloch mappings and Pfaltzgraff-Suffridge extension operators on bounded symmetric domains. Complex Var Elliptic Equ, 2020, 65: 57-73 [10] Hamada H, Honda T, Kohr G.Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317: 302-319 [11] Kohr G, Liczberski P.Univalent Mappings of Several Complex Variables. Cluj-Napoca: Cluj University Press, 1998 [12] Kohr G. Using the method of Löwner chains to introduce some subcalsses of biholomorphic mappings in $\mathbb{C}^n$. Rev Roum Math Pures Appl,2001, 46: 743-760 [13] Liu T S, Wang J F, Lu J. Distortion theorems for starlike mappings in several complex variables. Taiwanese J Math, 2011, 15: 2601-2608 [14] Liu X S, Liu T S. Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables. Chin Ann Math, 2016, 37B: 553-570 [15] Liu X S. Sharp distortion theorems for a class of biholomorphic mappings in several complex variables. Acta Mathematica Scientia, 2022, 42B(2): 454-466 [16] Nasr M A, Aouf M K. Radius of convexity for the class of starlike functions of complex order. Bull Fac Sci Assiut Univ Sect A, 1983, 12: 153-159 [17] Poreda T. On the univalent holomorphic maps of the unit polydisc of $\mathbb{C}^n$ which have the parametric representation, I-the geometric properties. Ann Univ Mariae Curie Sklodowsda Sect A, 1987, 41: 105-113 [18] Srivastava H M, Altιntç O, Serenbay S K. Coefficient bounds for certain subclasses of starlike functions of complex order. Appl Math Lett,2011, 24: 1359-1363 [19] Tu Z H, Xiong L P. Growth and distortion results for a class of biholomorphic mapping and extremal problem with parametric representation in $\mathbb{C}^n$. Complex Anal Oper Theory, 2019, 13: 2747-2769 [20] Wang J F. Distortion theorem for locally biholomorphic Bloch mappings on the unit ball $\mathbb{B}^n$. Bull malays Math Sci Soc, 2015, 38: 1657-1667 [21] Xu Q H, Liu T S. On the growth and covering theorem for normalized biholomorphic mappings. Chin J Cont Math, 2009, 30(2): 167-174 [22] Xu Q H, Liu T S. Sharp growth and distortion theorems for a subclass of biholomorphic mappings. Computer Math Appl, 2010, 59: 3778-3784 [23] Xiong L P. Distortion results for a certain subclass of biholomorphic mappings in $\mathbb{C}^n$. Complex Var Elliptic Equ, 2022, 67(4): 887-897 [24] Zhu Y C, Liu M S. Distortion theorems for biholomorphic convex mappings in Banach spaces. Complex Variables, 2005, 50: 57-68 |