[1] Bahouri H, Chemin J Y, Danchin R.Fourier Analysis and Nonlinear Partial Differential Equations. Hei- delberg: Springer, 2011 [2] Bresch D, Jabin P E.Global existence of weak solutions for compressible Navier-Stokes equations: ther- modynamically unstable pressure and anisotropic viscous stress tensor. Ann of Math, 2018, 188: 577-684 [3] Charve F, Danchin R.A global existence result for the compressible Navier-Stokes equations in the critical Lp framework. Arch Ration Mech Anal, 2010, 198: 233-271 [4] Chemin J Y, Gallagher I.Wellposedness and stability results for the Navier-Stokes equations in $\mathbb{R}$3. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 599-624 [5] Chemin J Y, Lerner N.Flot de champs de vecteurs no lipschitziens et équations de Navier-Stokes (French). J Differential Equations, 2010, 248: 2130-2170 [6] Chen Q, Miao C, Zhang Z.Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity. Comm Pure Appl Math, 2010, 63: 1173-1224 [7] Chen Q, Miao C, Zhang Z.On the ill-posedness of the compressible Navier-Stokes equations. Rev Mat Iberoam, 2015, 31: 1375-1402 [8] Chen Z M, Zhai X. Global large solutions and incompressible limit for the compressible Navier-Stokes equations. J Math Fluid Mech, 2019, 21: Art 26 [9] Danchin R.Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2000, 141: 579-614 [10] Danchin R.Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm Partial Differential Equations, 2001, 26: 1183-1233. Erratum: “Local theory in critical spaces for compressible viscous and heat-conductive gases”. Comm Partial Differential Equations, 2002, 27: 2531-2532 [11] Danchin R.Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Comm Partial Differential Equations, 2007, 32(9): 1373-1397 [12] Danchin R.Fourier analysis methods for the compressible Navier-Stokes equations. arXiv:1507.02637 [13] Danchin R, He L.The incompressible limit in Lp type critical spaces. Math Ann, 2016, 366(3/4): 1365-1402 [14] Danchin R, Mucha P.Compressible Navier-Stokes system: Large solutions and incompressible limit. Adv Math, 2017, 320: 904-925 [15] Danchin R, Xu J.Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp Framework. Arch Ration Mech Anal, 2017, 224: 53-90 [16] Fang D, Zhang T, Zi R.Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data. SIAM J Math Anal, 2018, 50: 4983-5026 [17] Feireisl E.Dynamics of Viscous Compressible Fluids. Oxford: Oxford University Press, 2004 [18] Feireisl E, Gwiazda P, Świerczewska-Gwiazda A, Wiedemann E. Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc Var Partial Differential Equations, 2016, 55: Art 141 [19] Feireisl E, Novotný A, Petzeltová H.On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3: 358-392 [20] Feireisl E, Novotný A, Sun Y.Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana Univ Math J, 2011, 60: 611-631 [21] Fujita H, Kato T.On the Navier-Stokes initial value problem. I. Arch Rational Mech Anal, 1964, 16: 269-315 [22] Haspot B.Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch Ration Mech Anal, 2011, 202: 427-460 [23] He L, Huang J, Wang C.Global stability of large solutions to the 3D compressible Navier-Stokes equations. Arch Ration Mech Anal, 2019, 234: 1167-1222 [24] Hoff D.Global solutions of the Navier-Stokes equations for multidimensional compressible flow with dis- continuous initial data. J Differential Equations, 1995, 120: 215-254 [25] Hoff D.Compressible flow in a half-space with Navier boundary conditions. J Math Fluid Mech, 2005, 7: 315-338 [26] Hoff D, Zumbrun K.Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603-676 [27] Huang F, Wang T, Wang Y.Diffusive wave in the low Mach limit for compressible Navier-Stokes equations. Adv Math, 2017, 319: 348-395 [28] Huang J, Paicu M, Zhang P.Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity. J Math Pures Appl, 2013, 100: 806-831 [29] Huang X, Li J, Xin Z.Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65: 549-585 [30] Jiang S, Zhang P.On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm Math Phys, 2001, 215: 559-581 [31] Jiang S, Zhang P.Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids. J Math Pure Appl, 2003, 82: 949-973 [32] Li H, Wang Y, Xin Z.Non-existence of classical solutions with finite energy to the Cauchy problem of the compressible Navier-Stokes equations. Arch Ration Mech Anal, 2019, 232: 557-590 [33] Li J, Xin Z. Global well-posedness and large time asymptotic behavior of classical solutions to the com- pressible Navier-Stokes equations with vacuum. Ann PDE, 2019, 5: Art 7 [34] Lions P L.Mathematical Topics in Fluid Mechanics: Vol 2: Compressible Models. Oxford: Oxford Univer- sity Press, 1998 [35] Matsumura A, Nishida T.The initial value problem for the equations of motion of viscous and heat- conductive gases. J Math Kyoto Univ, 1980, 89: 67-104 [36] Matsumura A, Nishida T.Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89: 445-464 [37] Sun W, Jiang S, Guo Z.Helically symmetric solutions to the 3-D Navier-Stokes equations for compressible isentropic fluids. J Differential Equations, 2006, 222: 263-296 [38] Villani C. Hypocoercivity. Mem Amer Math Soc, 2009, 202: Art 950 [39] Wang C, Wang W, Zhang Z.Global well-posedness of compressible Navier-Stokes equations for some classes of large initial data. Arch Ration Mech Anal, 2014, 213: 171-214 [40] Xin Z.Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51: 229-240 [41] Xin Z, Yan W.On blowup of classical solutions to the compressible Navier-Stokes equations. Comm Math Phys, 2013, 321: 529-541 [42] Zhai X, Li Y, Zhou F.Global large solutions to the three dimensional compressible Navier-Stokes equations. |