[1] Arsénio D.From Boltzmann's equation to the incompressible Navier-Stokes-Fourier system with long-range interactions. Arch Ration Mech Anal, 2012, 206(3): 367-488 [2] Arsénio D, Saint-Raymond L.From the Vlasov-Maxwell-Boltzmann System to Incompressible Viscous Electro-Magneto-Hydrodynamics. Vol 1. Zürich: European Mathematical Society, 2019 [3] Bardos C, Golse F, Levermore C D.Fluid dynamic limits of kinetic equations I: formal derivation. J Stat Phys, 1991, 63: 323-344 [4] Bardos C, Golse F, Levermore C D.Fluid dynamic limits of kinetic equations II: convergence proof for the Boltzmann equation. Commun Pure Appl Math, 1993, 46: 667-753 [5] Bardos C, Ukai S.The classical incompressible Navier-Stokes limit of the Boltzmann equation. Math Models Methods Appl Sci, 1991, 1(2): 235-257 [6] Boyer F, Fabrie P.Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. New York: Springer, 2013 [7] Briant M.From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: a quantitative error estimate. J Differential Equations, 2015, 259(11): 6072-6141 [8] Briant M, Merino-Aceituno S, Mouhot C.From Boltzmann to incompressible Navier-Stokes in Sobolev spaces with polynomial weight. Anal Appl (Singap), 2019, 17(1): 85-116 [9] Caflisch R.The fluid dynamic limit of the nonlinear Boltzmann equation. Comm Pure Appl Math, 1980, 33(5): 651-666 [10] De Masi A, Esposito R, Lebowitz J L.Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Comm Pure Appl Math, 1989, 42(8): 1189-1214 [11] DiPerna R J, P L Lions. On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann Math, 1989, 130: 321-366 [12] Duan R J, Yang T, Zhao H J.The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case. J Differential Equations, 2012, 252(12): 6356-6386 [13] Duan R J, Yang T, Zhao H J.The Vlasov-Poisson-Boltzmann system for soft potentials. Math Models Methods Appl Sci, 2013, 23(6): 979-1028 [14] Duan R J, Lei Y J, Yang T, Zhao H J.The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials. Commun Math Phys, 2017, 351: 95-153 [15] Gallagher I, Tristani I.On the convergence of smooth solutions from Boltzmann to Navier-Stokes. Ann H Lebesgue, 2020, 3: 561-614 [16] Golse F, Saint-Raymond L.The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent Math, 2004, 155(1): 81-161 [17] Golse F, Saint-Raymond L.Hydrodynamic limits for the Boltzmann equation. Riv Mat Univ Parma, 2005, 7: 1-144 [18] Guo M M, Jiang N, Luo Y L.From Vlasov-Poisson-Boltzmann system to incompressible Navier-Stokes- Fourier-Poisson system: convergence for classical solutions. arXiv: 20006.16514 [19] Guo Y.The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm Pure Appl Math, 2002, 55: 1104-1135 [20] Guo Y.The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53(4): 1081-1094 [21] Guo Y.Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm Pure Appl Math, 2006, 59(5): 626-687 [22] Guo Y, Jang J.Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Commun Math Phys, 2010, 299: 469-501 [23] Guo Y, Jang J, Jiang N.Local Hilbert expansion for the Boltzmann equation. Kinet Relat Models, 2009, 2(1): 205-214 [24] Guo Y, Jang J, Jiang N.Acoustic limit for the Boltzmann equation in optimal scaling. Comm Pure Appl Math, 2010, 63(3): 337-361 [25] Jang J, Jiang N.Acoustic limit of the Boltzmann equation: Classical solutions. Discrete Contin Dyn Syst, 2009, 25(3): 869-882 [26] Jiang N, Xu C J, Zhao H J.Incompressible Navier-Stokes-Fourier limit from the Boltzmann equation: classical solutions. Indiana Univ Math J, 2018, 67(5): 1817-1855 [27] Jiang N, Masmoudi N.Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I. Comm Pure Appl Math, 2017, 70(1): 90-171 [28] Jiang N, Zhang X.Sensitivity analysis and incompressible Navier-Stokes-Poisson limit of Vlasov-Poisson- Boltzmann equations with uncertainty. arXiv:2007.00879 [29] Levermore C D, Sun W.Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinet Relat Models, 2010, 3(2): 335-351 [30] Lions P L. Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II. J Math Kyoto Univ, 1994, 34(2): 391-427, 429-461 [31] Masmoudi N, Saint-Raymond L.From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Comm Pure Appl Math, 2003, 56(9): 1263-1293 [32] Mischler S, Mouhot C.Kac's program in kinetic theory. Invent Math, 2013, 193(1): 1-147 [33] Nishida T.Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Comm Math Phys, 1978, 61: 119-148 [34] Saint-Raymond L.Hydrodynamic Limits of the Boltzmann Equations. Berlin: Springer-Verlag, 2009 [35] Ukai S.Solutions of the Boltzmann equation//Nishida T, Mimura M, Fujii H. Patterns and Waves. Amsterdam: North-Holland, 1986: 37-96 [36] Xiao Q H, Xiong L J, Zhao H J.The Vlasov-Posson-Boltzmann system without angular cutoff for hard potential. Science China Math, 2014, 57(3): 515-540 [37] Xiao Q H, Xiong L J, Zhao H J.The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials. J Funct Anal, 2017, 272(1): 166-226 |