[1] Alikhanov A.A new difference scheme for the time fractional diffusion equation. J Comput Phys, 2015, 280: 424-438 [2] Baillie R.Long memory processes and fractional integration in econometrics. J Econom, 1996, 73(1): 5-59 [3] Baleanu D, Diethelm K, Scalas E, et al.Fractional Calculus: Models and Numerical Methods. Singapore: World Scientific, 2012 [4] Berkowitz B, Klafter J, Metzler R, et al.Physical pictures of transport in heterogeneous media: Advectiondispersion, random-walk, and fractional derivative formulations. Water Resour Res, 2002, 38(10): 1191 [5] Bronstein I, Israel Y, Kepten E, et al.Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett, 2009, 103(1): 018102 [6] Castillo P, Kanschat B, Schotzau D, et al.Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math Comput, 2002, 71(238): 455-478 [7] Cockburn B, Shu C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework. Math Comput, 1989, 52(186): 411-435 [8] Cockburn B, Shu C W.The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35(6): 2440-2463 [9] Cockburn B, Kanschat G, Ilaria P, et al.Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J Numer Anal, 2001, 39(1): 264-285 [10] Dai H,Wei L, Zhang X.Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation. Numer Algorithms, 2014, 67(4): 845-862 [11] Deng W.Finite element method for the space and time fractional fokker-planck equation. SIAM J Numer Anal, 2008, 47(1): 204-226 [12] Du Y, Liu Y, Li H, et al.Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J Comput Phys, 2017, 344: 108-126 [13] Glöckle W, Nonnenmacher T.A fractional calculus approach to self-similar protein dynamics. Biophys J, 1995, 681(1): 46-53 [14] Hesthaven J S, Xu Q.Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J Numer Anal, 2014, 52(1): 405-423 [15] Hilfer R.Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000 [16] Ichise M, Nagayanagi Y, Kojima T.An analog simulation of non-integer order transfer functions for analysis of electrode processes. J Electroanal Chem, 1971, 33(2): 253-265 [17] Jin B, Lazarov R, Zhou Z.Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J Numer Anal, 2013, 51(1): 445-466 [18] Kilbas A, Srivastava H, Trujillo J.Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006 [19] Li C, Wang Z.The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis. Appl Numer Math, 2019, 140: 1-22 [20] Li X, Xu C.A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal, 2009, 47(3): 2108-2131 [21] Lin Y, Xu C.Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225(2): 1533-1552 [22] Liu C, Shen J.A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method. Physica D, 2003, 179(3/4): 211-228 [23] Lv C, Xu C.Error analysis of a high order method for time-fractional diffusion equations. SIAM J Sci Comput, 2016, 38(5): A2699-A2724 [24] Meerschaert M, Tadjeran C.Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math, 2004, 172(1): 65-77 [25] Meerschaert M, Tadjeran C.Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math, 2006, 56(1): 80-90 [26] Metzler R, Klafter J.The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 2000, 339(1): 1-77 [27] Mustapha K, McLean W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algorithms, 2011, 56(2): 159-184 [28] Mustapha K, McLean W. Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J Numer Anal, 2012, 32(3): 906-925 [29] Podlubny I.Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math Sci Engin, 2013, (3): 553-563 [30] Schroeder J, Hagiwara S.Cytosolic calcium regulates ion channels in the plasma membrane of vicia faba guard cells. Nature, 1989, 338(6214): 427-430 [31] Sun Z, Gao G, Zhang H.A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J Comput Phys, 2014, 259: 33-50 [32] Yuan W, Huang Y, Chen Y.A local discontinuous Galerkin method for time-fractional Burgers equations. East Asian J Appl Math, 2020, 10(4): 818-837 [33] Wang Y, Ren L.A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl Math Comput, 2019, 342: 71-93 [34] Wei L, He Y.Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourthorder problems. Appl Math Model, 2014, 38(4): 1511-1522 [35] Zhang Y, Sun Z, Liao H.Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys, 2014, 265: 195-210 |