[1] Allez R, Rhodes R, Vargas V.Lognormal *-scale invariant random measures. Prob Theory and Related Fields, 2013, 155(3): 751-788 [2] Balan R M, Quer-Sardanyons L, Song J.Hölder continuity for the parabolic Anderson model with spacetime homogeneous Gaussian noise. Acta Mathematica Scientia, 2019, 39B(3): 717-730 [3] Carmona R A, Molchanov S A.Stationary parabolic Anderson model and intermittency. Prob Theory and Related Fields, 1995, 102(4): 433-453 [4] Chakraborty P, Chen X, Gao B, Tindel S.Quenched asymptotics for a 1-d stochastic heat equation driven by a rough spatial noise. Stochastic Process Appl, 2020, 130(11): 6689-6732 [5] Chen X.Quenched asymptotics for Brownian motion of renormalised Poisson potential and for the related parabolic Anderson models. Ann Probab, 2012, 40(4): 1436-1482 [6] Chen X.Quenched asymptotics for Brownian motion in generalized Gaussian potential. Ann Probab, 2014, 42(2): 576-622 [7] Chen X.Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise. Ann Probab, 2016, 44(2): 1535-1598 [8] Chen X, Hu Y, Nualart D, Tindel S.Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise. Electron J Probab, 2017, 22: 1-38 [9] Conus D, Joseph M, Khoshnevisan D.On the chaotic character of the stochastic heat equation, before the onset of intermitttency. Ann Probab, 2013, 41: 2225-2260 [10] Conus D, Joseph M, Khoshnevisan D, Shiu S.On the chaotic character of the stochastic heat equation, II. Prob Theory and Related Fields, 2013, 156(3/4): 483-533 [11] Corless R, Gonnet G, Hare D, et al.On the Lambert W function. Adv Comput Math, 1996, 5(1): 329-359 [12] Duplantier B, Rhodes R, Sheffield S, Vargas V.Critical Gaussian multiplicative chaos: convergence of the derivative martingale. Ann Probab, 2014, 42(5): 1769-1808 [13] Duplantier B, Rhodes R, Sheffield S, Vargas V.Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Commun Math Phys, 2014, 330(1): 283-330 [14] Gärtner J, König W, Molchanov S.Almost sure asymptotics for the continuous parabolic anderson model. Prob Theory and Related Fields, 2000, 118(4): 547-573 [15] Hu X, Miller J, Peres Y.Thick points of the Gaussian free field. Ann Probab, 2010, 38(2): 896-926 [16] Hu Y, Nualart D, Song J.Feynman-Kac formula for heat equation driven by fractional white noise. Ann Probab, 2011, 39: 291-326 [17] Hu Y, Huang J, Nualart D, Tindel S.Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron J Probab, 2015, 20: 1-50 [18] Hu Y, Lê K. Joint Hölder continuity of parabolic Anderson model. Acta Mathematica Scientia, 2019, 39B(3): 764-780 [19] Hu Y.Some recent progress on stochastic heat equations. Acta Mathematica Scientia, 2019, 39B(3): 874-914 [20] Huang J, Lê K, Nualart D. Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise. Stoch Partial Differential Equations: Anal Comput, 2017, 5(4): 614-651 [21] Kahane J P.Sur le chaos multiplicatif. Ann Sci Math Québec, 1985, 9(2): 105-150 [22] König W.The Parabolic Anderson Model: Random Walk in Random Potential. Boston: Birkhäuser, 2016 [23] König W, Perkowski N, van Zuijlen W. Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential. Ann Inst Henri Poincare-Probab Stat, 2022, 58(2): 1351-1384 [24] Li H, Chen X.Precise moment asymptotics for the stochastic heat equation of a time-derivative Gaussian noise. Acta Mathematica Scientia, 2019, 39B(3): 629-644 [25] Lyu Y.Precise high moment asymptotics for parabolic Anderson model with log-correlated Gaussian field. Statist Probab Lett, 2020, 158: 108662 [26] Lyu Y.Spatial asymptotics for the Feynman-Kac formulas driven by time-dependent and space-fractional rough Gaussian fields with the measure-valued initial data. Stochastic Process Appl, 2022, 143: 106-159 [27] Madaule T.Maximum of a log-correlated Gaussian field. Ann Inst Henri Poincar Probab Stat, 2015, 51(4): 1369-1431 [28] Mourrat J, Weber H.Global well-posedness of the dynamic $\Phi^{4}$ model in the plane. Ann Probab, 2017, 45(4): 2398-2476 [29] Pitt L, Robeva R.On the sharp Markov property for Gaussian random fields and spectral synthesis in spaces of Bessel potentials. Ann Probab, 2003, 31(3): 1338-1376 [30] Rhodes R, Vargas V.Gaussian multiplicative chaos and applications: a review. Probab Surv, 2014, 11: 315-392 [31] Rhodes R, Vargas V.Lectures on Gaussian Multiplicative Chaos. Isaac Newton Institute for Mathematical Sciences, 2015. Lectures on Gaussian Multiplicative Chaos. Isaac Newton Institute for Mathematical Sciences, 2015. http://www.newton.ac.uk/files/seminar/20150119100011001-297514.pdf [32] Robert R, Vargas V.Gaussian multiplicative chaos revisited. Ann Probab, 2010, 38(2): 605-631 [33] Sheffield S.Gaussian free fields for mathematicians. Prob Theory and Related Fields, 2007, 139(3/4): 521-541 [34] Slepian D.The one-sided barrier problem for Gaussian noise. Bell System Technical Journal, 1962, 41(2): 463-501 [35] Xiao Y.Sample Path Properties of Anisotropic Gaussian Random Fields//Khoshnevisan D, Rassoul-Agha F. A Minicourse on Stochastic Partial Differential Equations. Berlin: Springer, 2009: 145-212 |