[1] Auslander J. Mean-L-stable systems. Illinois J Math, 1959, 3:566-579 [2] Auslander J. Minimal Flows and Their Extensions. North-Holland, 1988 [3] Aujogue J B, Barge M, Kellendonk J, Lenz D. Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets. Birkhäuser Basel:Mathematics of Aperiodic Order, 2015 [4] Beiglböck M, Bergelson V, Fish A. Sumset phenomenon in countable amenable groups. Adv Math, 2010, 223(2):416-432 [5] Clay J P. Proximity relations in transformation groups. Trans Amer Math Soc, 1963, 108(1):88-96 [6] Denker M, Grillenberger C, Sigmund K. Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics. Vol 527. Berlin-New York:Springer-Verlag, 1976 [7] Downarowicz T, Glasner Eli. Isomorphic extensions and applications. Topol Methods Nonlinear Anal, 2016, 48(1):321-338 [8] Downarowicz T, Huczek D, Zhang G. Tilings of amenable groups. J Reine Angew Math, 2019, 747:277-298 [9] Dooley A H, Zhang G. Local entropy theory of a random dynamical system. Mem Amer Math Soc, 2015, 233(1099) [10] Downarowicz T, Zhang G. Symbolic extensions of amenable group actions and the comparison property. arXiv preprint arXiv:1901.01457, 2019 [11] Ellis R, Gottschalk W H. Homomorphisms of transformation groups. Trans Amer Math Soc, 1960, 94:258-271 [12] Fomin S. On dynamical systems with a purely point spectrum. Dokl Akad Nauk SSSR, 1951, 77:29-32(in Russian) [13] Fuhrmann G, Gröger M, Lenz D. The structure of mean equicontinuous group actions. arXiv preprint. https://arxiv.org/pdf/1812.10219 [14] Huang X, Liu J, Zhu C. The Bowen topological entropy of subsets for amenable group actions. J Math Anal Appl, 2019, 472(2):1678-1715 [15] Huang W, Li J, Thouvenot J, et al. Mean equicontinuity, bounded complexity and discrete spectrum. arXiv preprint. https://arxiv.org/pdf/1806.02980 [16] Kerr D, Li H. Ergodic Theory:Independence and Dichotomies. Springer, 2016 [17] Kerr D, Li H. Soficity, amenability, and dynamical entropy. Amer J Math, 2013, 135(3):721-761 [18] Lącka M, Pietrzyk M. Quasi-uniform convergence in dynamical systems generated by an amenable group action. J Lond Math Soc, 2018, 98(3):687-707 [19] Lindenstrauss E. Pointwise theorems for amenable groups. Invent Math, 2001, 146(2):259-295 [20] Li J. Chaos and entropy for interval maps. J Dyn Differ Equ, 2011, 23(2):333-352 [21] Li J, Tu S. On proximality with Banach density one. J Math Anal Appl, 2014, 416(1):36-51 [22] Li J, Tu S, Ye X. Mean equicontinuity and mean sensitivity. Ergodic Theory Dynam Systems, 2015, 35(8):2587-2612 [23] Moothathu T K S. Syndetically proximal pairs. J Math Anal Appl, 2011, 379(2):656-663 [24] Moothathu T K S, Oprocha P. Synetical proximality and scrambled sets. Topol Methods Nonlinear Anal, 2013, 41(2):421-461 [25] Oxtoby J C. Ergodic sets. Bull Amer Math Soc, 1952, 58:116-136 [26] Ollagnier J M. Ergodic Theory and Statistical Mechanics. Springer-Verlag, 1985 [27] Ornstein D S, Weiss B. Entropy and isomorphism theorems for actions of amenable groups. J Analyse Math, 1987, 48(1):1-141 [28] Oprocha P, Zhang G. Topological aspects of dynamics of pairs, tuples and sets. Recent Progress in General Topology Ⅲ. Paris:Atlantis Press, 2014:665-709 [29] Parthasarathy K R. Introduction to probability and measure. London:Macmillan, 1977 [30] Qiu J, Zhao J. A Note on Mean Equicontinuity. J Dyn Differ Equ, 2020, 32:101-116 [31] Rudin W. Functional analysis. McGraw-Hill, Inc, 1991 [32] Scarpellini B. Stability properties of flows with pure point spectrum. J London Math Soc, 1982, 2(3):451-464 [33] Sigmund K. On minimal centers of attraction and generic points. J Reine Angew Math, 1977, 295:72-79 [34] Varadarajan V S. Groups of automorphisms of Borel spaces. Trans Amer Math Soc, 1963, 109:191-220 [35] Walters P. An Introduction to Ergodic Theory. New York:Springer, 1982 [36] Weiss B. Actions of amenable groups. Topics in dynamics and ergodic theory, 226-260, London Math Soc Lecture Note Ser, 310. Cambridge:Cambridge Univ Press, 2003 [37] Zhou Z. Weakly almost periodic point and measure centre. Science in China, Ser A, 1993, 36(2):142-153 [38] Zhu B, Huang X, Lian Y. The systems with almost Banach mean equicontinuity for abelian group actions. arXiv preprint. https://arxiv.org/pdf/1909.00920 |