数学物理学报(英文版) ›› 2021, Vol. 41 ›› Issue (3): 719-728.doi: 10.1007/s10473-021-0306-y

• 论文 • 上一篇    下一篇

SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS

杨月英1, 钱伟茂2, 张宏伟3, 褚玉明4   

  1. 1. School of Mechanical and Electrical Engineering, Huzhou Vocational & Technical College, Huzhou 313000, China;
    2. School of Continuing Education, Huzhou Vocational & Technical College, Huzhou 313000, China;
    3. School of Mathematics and Statistics, Changsha University of Science & Technology, Changsha 410014, China;
    4. Department of Mathematics, Huzhou University, Huzhou 313000, China
  • 收稿日期:2019-05-24 修回日期:2020-04-26 出版日期:2021-06-25 发布日期:2021-06-07
  • 通讯作者: Yuming CHU E-mail:chuyuming2005@126.com,chuyuming@zjhu.edu.cn
  • 作者简介:Yueying YANG,E-mail:yyy1008@163.com;Weimao QIAN,E-mail:qwm661977@126.com;Hongwei ZHANG,E-mail:hwzhang2018@163.com
  • 基金资助:
    This research was supported by the Natural Science Foundation of China (61673169, 11301127, 11701176, 11626101, 11601485).

SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS

Yueying YANG1, Weimao QIAN2, Hongwei ZHANG3, Yuming CHU4   

  1. 1. School of Mechanical and Electrical Engineering, Huzhou Vocational & Technical College, Huzhou 313000, China;
    2. School of Continuing Education, Huzhou Vocational & Technical College, Huzhou 313000, China;
    3. School of Mathematics and Statistics, Changsha University of Science & Technology, Changsha 410014, China;
    4. Department of Mathematics, Huzhou University, Huzhou 313000, China
  • Received:2019-05-24 Revised:2020-04-26 Online:2021-06-25 Published:2021-06-07
  • Contact: Yuming CHU E-mail:chuyuming2005@126.com,chuyuming@zjhu.edu.cn
  • About author:Yueying YANG,E-mail:yyy1008@163.com;Weimao QIAN,E-mail:qwm661977@126.com;Hongwei ZHANG,E-mail:hwzhang2018@163.com
  • Supported by:
    This research was supported by the Natural Science Foundation of China (61673169, 11301127, 11701176, 11626101, 11601485).

摘要: In the article, we prove that the double inequalities\[\begin{array}{l}{G^p}[{{\rm{\lambda }}_1}a + (1 - {{\rm{\lambda }}_1})b,{{\rm{\lambda }}_1}b + (1 - {{\rm{\lambda }}_1})a]{A^{1 - p}}(a,b) < [A(a,b),G(a,b)]\\ < {G^p}[{\mu _1}a + (1 - {\mu _1})b,{\mu _1}b + (1 - {\mu _1})a]{A^{1 - p}}(a,b),\\{C^s}[{\rm{\lambda }}2a + (1 - {{\rm{\lambda }}_2})b,{{\rm{\lambda }}_2}b + (1 - {{\rm{\lambda }}_2})a]{A^{1 - p}}(a,b) < [A(a,b),Q(a,b)]\\ < {C^s}[\mu 2a + (1 - \mu 2)b,\mu 2b + (1 - {\mu _2})a]{A^{1 - p}}(a,b)\end{array}\] hold for all a, b > 0 with $a\neq b$ if and only if $\lambda_{1}\leq 1/2-\sqrt{1-(2/\pi)^{2/p}}/2$, $\mu_{1}\geq 1/2-\sqrt{2p}/(4p)$, $\lambda_{2}\leq1/2+\sqrt{2^{3/(2s)}(\mathcal{E}(\sqrt{2}/2)/\pi)^{1/s}-1}/2$ and $\mu_{2}\geq 1/2+\sqrt{s}/(4s)$ if $\lambda_{1}, \mu_{1}\in (0, 1/2)$, $\lambda_{2}, \mu_{2}\in (1/2, 1)$, $p\geq 1$ and $s\geq 1/2$, where $G(a, b)=\sqrt{ab}$, $A(a,b)=(a+b)/2$, $T(a,b)=2\int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2}t+b^{2}\sin^{2}t}{\rm d}t/\pi$, $Q(a,b)=\sqrt{\left(a^{2}+b^{2}\right)/2}$, $C(a, b)=(a^{2}+b^{2})/(a+b)$ and $\mathcal{E}(r)=\int_{0}^{\pi/2}\sqrt{1-r^{2}\sin^{2}t}{\rm d}t$.

关键词: Geometric mean, arithmetic mean, Toader mean, ontraharmonic mean, complete elliptic integral

Abstract: In the article, we prove that the double inequalities\[\begin{array}{l}{G^p}[{{\rm{\lambda }}_1}a + (1 - {{\rm{\lambda }}_1})b,{{\rm{\lambda }}_1}b + (1 - {{\rm{\lambda }}_1})a]{A^{1 - p}}(a,b) < [A(a,b),G(a,b)]\\ < {G^p}[{\mu _1}a + (1 - {\mu _1})b,{\mu _1}b + (1 - {\mu _1})a]{A^{1 - p}}(a,b),\\{C^s}[{\rm{\lambda }}2a + (1 - {{\rm{\lambda }}_2})b,{{\rm{\lambda }}_2}b + (1 - {{\rm{\lambda }}_2})a]{A^{1 - p}}(a,b) < [A(a,b),Q(a,b)]\\ < {C^s}[\mu 2a + (1 - \mu 2)b,\mu 2b + (1 - {\mu _2})a]{A^{1 - p}}(a,b)\end{array}\] hold for all a, b > 0 with $a\neq b$ if and only if $\lambda_{1}\leq 1/2-\sqrt{1-(2/\pi)^{2/p}}/2$, $\mu_{1}\geq 1/2-\sqrt{2p}/(4p)$, $\lambda_{2}\leq1/2+\sqrt{2^{3/(2s)}(\mathcal{E}(\sqrt{2}/2)/\pi)^{1/s}-1}/2$ and $\mu_{2}\geq 1/2+\sqrt{s}/(4s)$ if $\lambda_{1}, \mu_{1}\in (0, 1/2)$, $\lambda_{2}, \mu_{2}\in (1/2, 1)$, $p\geq 1$ and $s\geq 1/2$, where $G(a, b)=\sqrt{ab}$, $A(a,b)=(a+b)/2$, $T(a,b)=2\int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2}t+b^{2}\sin^{2}t}{\rm d}t/\pi$, $Q(a,b)=\sqrt{\left(a^{2}+b^{2}\right)/2}$, $C(a, b)=(a^{2}+b^{2})/(a+b)$ and $\mathcal{E}(r)=\int_{0}^{\pi/2}\sqrt{1-r^{2}\sin^{2}t}{\rm d}t$.

Key words: Geometric mean, arithmetic mean, Toader mean, ontraharmonic mean, complete elliptic integral

中图分类号: 

  • 26E60