[1] Bracci F. Shearing process and an example of a bounded support function in $S^0(\mathbb{B}^2)$. Comput Methods Funct Theory, 2015, 15:151-157 [2] Bracci F, Graham I, Hamada H, Kohr G. Variation of Loewner chains, extreme and support points in the class S0 in higher dimensions. Constr Approx, 2016, 43:231-251 [3] Fekete M, Szegö G. Eine Bemerkunguber ungerade schlichte Funktionen. J Lond Math Soc, 1933, 8:85-89 [4] Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canadian J Math, 2002, 54:324-351 [5] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York:Marcel Dekker, 2003 [6] Graham I, Kohr G, Kohr M. Loewner chains and parametric representation in several complex variables. J Math Anal Appl, 2003, 281:425-438 [7] Graham I, Hamada H, Honda T, Kohr G, Shon K H. Growth, distortion and coefficient bounds for Carathéodory families in $\mathbb{C}^n$ and complex Banach spaces. J Math Anal Appl, 2014, 416:449-469 [8] Graham I, Hamada H, Kohr G, Kohr M. Support points and extreme points for mappings with A-parametric representation in $\mathbb{C}^n$. J Geom Anal, 2016, 26:1560-1595 [9] Graham I, Hamada H, Kohr G, Kohr M. Bounded support points for mappings with g-parametric representation in $\mathbb{C}^2$. J Math Anal Appl, 2017, 454:1085-1105 [10] Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317:302-319 [11] Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin Ann Math Series B, 2008, 29:353-368 [12] Hamada H, Kohr G. Support points for families of univalent mappings on bounded symmetric domains. Sci China Math, to appear. Doi:10.1007/s11425-019-1632-1 [13] Kohr G. On some best bounds for coefficients of several subclasses of biholomorphic mappings in $\mathbb{C}^n$. Complex Variables, 1998, 36:261-284 [14] Keogh F, Merkes E P. A coefficient inequality for certain classes of analytic functions. Proc Amer Math Soc, 1969, 20:8-12 [15] Pfaltzgraff J A, Suffridge T J. An extension theorem and linear invariant families generated by starlike maps. Ann Univ Mariae Curie Sklodowska, Sect A, 1999, 53:193-207 [16] Roper K, Suffridge T J. Convexity properties of holomorphic mappings in $\mathbb{C}^n$. Trans Amer Math Soc, 1999, 351:1803-1833 [17] Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces (in Chinese). Acta Math Sin, 1995, 38:234-241 [18] Liu X S, Liu T S. The refining estimation of homogeneous expansions for quasi-convex mappings. Advances in Mathematics (China), 2007, 36:679-685 [19] Liu X S, Liu T S. An inequality of homogeneous expansion for biholomorphic quasi-convex mappings on the unit polydisk and its application. Acta Mathematica Scientia, 2009, 29B(1):201-209 [20] Xu Q H, Liu T S. On coefficient estimates for a class of holomorphic mappings. Sci China Ser A-Math, 2009, 52:677-686 [21] Xu Q H, Liu T S, Liu X S. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389:781-791 [22] Xu Q H, Liu T S. On the Fekete and Szegö problem for the class of starlike mappings in several complex variables. Abstr Appl Anal, 2014, ID 807026 [23] Xu Q H, Yang T, Liu T S. Xu H M. Fekete and Szegö problem for a subclass of quasi-convex mappings in several complex variables. Front Math China, 2015, 10:1461-1472 [24] Xu Q H, Fang F, Liu T S. On the Fekete and Szegö problem for starlike mappings of order α. Acta Math Sin (Engl Ser), 2017, 33:554-564 [25] Xu Q H, Liu T S, Liu X S. Fekete and Szegö problem in one and higher dimensions. Sci China Math, 2018, 61:1775-1788 [26] Xu Q H. A refinement of the coefficient inequalities for a subclass of starlike mappings in several complex variables. Results Math, 2019, 74(4):Art 156, 17 pp [27] Xu Q H, Lai Y P, Liu T S. Some refinements of the Fekete and Szegö inequalities in one and higher dimensions. Complex Var Elliptic Equ, to appear. Doi:org/10.1080/17476933.2020.1743985 [28] Zhang W J, Liu T S. The growth and covering theorems for quasi-convex mappings on the unit ball in complex Banach spaces. Sci China Ser A-Math, 2002, 45:1538-1547 |