[1] Metzler R, Klafter J. Boundary value problems for fractional diffusion equations. Physica A, 2010, 278:107-125 [2] Yuste S B, Lindenberg K. Subdiffusion-limited reactions. Chem Phys, 2002, 284:169-180 [3] Magin R, Feng X, Baleanu D. Solving the fractional order Bloch equation. Concept Magn Reson A, 2009, 34:16-23 [4] Chen W, Ye L J, Sun H G. Fractional diffusion equations by the kansa method. Comput Math Appl, 2010, 59:1014-1620 [5] Kirane M, Malik A S, Al-Gwaiz M A. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary condition. Math Methods Appl Sci, 2013, 36:1056-1069 [6] Lesnic D, Hussein S O, Johansson B T. Inverse space-dependent force problems for the wave equation. J Comput Appl Math, 2016, 306:10-39 [7] Lopushansky A, Lopushanska H. Inverse source cauchy problem for a time fractional diffusion-wave equation with distributions. Electron J Differ Equ, 2017, 182:1-14 [8] Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl, 2011, 382:426-447 [9] Šišková K, Slodička M. Recognition of a time-dependent source in a time-fractional wave equation. Appl Numer Math, 2017, 121:1-17 [10] Tuan N H, Le D L, Nguyen V T. Regularization of an inverse source problem for a time fractional diffusion equation. Appl Math Model, 2016, 40:8244-8264 [11] Wei T, Sun L L, Li Y S. Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation. Appl Math Lett, 2016, 61:108-113 [12] Wei T, Wang J G. A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl Numer Math, 2014, 78:95-111 [13] Yang F, Fu C L. The quasi-reversibility regularization method for identifying the unknown source for time-fractional diffusion equation. Appl Math Model, 2015, 39:1500-1512 [14] Yang F, Fu C L, Li X X. A mollification regularization method for unknown source in time-fractional diffusion equation. Int J Comput Math, 2014, 91:1516-1534 [15] Yang F, Fu C L, Li X X. The inverse source problem for time fractional diffusion equation:stability analysis and regularization. Inverse Probl Sci Eng, 2015, 23:969-996 [16] Yang F, Fu C L, Li X X. Identifying an unknown source in space-fractional diffusion equation. Acta Math Sci, 2014, 34:1012-1024 [17] Zhang Z Q, Wei T. Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl Math Comput, 2013, 219:5972-5983 [18] Cheng H, Fu C L. An iteration regularization for a time-fractional inverse diffusion problem. Appl Math Model, 2012, 36:5642-5649 [19] Yang M, Liu J J. Solving a final value fractional diffusion problem by boundary condition regulafization. Appl Numer Math, 2013, 66:45-58 [20] Zhang Z Q, Wei T. An optimal regularization method for space-fractional backward diffusion problem. Math Comput Simulat, 2013, 92:14-27 [21] Ren C X, Xu X, Lu S. Regularization by projection for a backward problem of the time-fractional diffusion equation. J Inverse Ill-Pose Probl, 2014, 22:2011-0021 [22] Yang F, Fan P, Li X X, Ma X Y. Fourier truncation regularization method for a time-fractional backward diffusion problem with a nonlinear source. Mathematics, 2019, 7:865 [23] Yang F, Pu Q, Li X X, Li D G. The truncation regularization method for identifying the initial value on non-homogeneous time-fractional diffusion-wave equations. Mathematics, 2019, 7:1007 [24] Wei Z L, Li Q D, Che J L. Initial value problems for fractional differential equations involving RiemannLiouville sequential fractional derivative. J Math Anal Appl, 2010, 367:260-272 [25] Wang J G, Wei T, Zhou Y B. Tikhonov regularization method for a backward problem for the time-fractional diffusion. Appl Math Model, 2013, 37:8518-8523 [26] Yang F, Sun Y R, Li X X, Huang C Y. The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain. Numerical Algorithms 2019, 82(2):623-639 [27] Yang F, Zhang Y, Li X X. Landweber iterative method for identifying the initial value problem of the timespace fractional diffusion-wave equation. Numerical Algorithms, DOI:doi.org/10.1007/s11075-019-00734-6 [28] Yang F, Wang N, Li X X. A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain. J Inverse Ill-posed Probl, 2019, 27(5):609-621 [29] Yang F, Fan P, Li X X. Fourier truncation regularization method for a three-dimensional Cauchy problem of the modified helmholtz equation with perturbed wave number. Mathematics, 2019, 7:705 [30] Yang F, Fu C L, Li X X. A modified tikhonov regularization method for the cauchy problem of Laplace equation. Acta Mathematica Scientia, 2015, 35B(6):1339-1348 [31] Wei T, Zhang Z Q. Stable numerical solution to a Cauchy problem for a time fractional diffusion eqution. Eng Anal Bound Elem, 2014, 40:128-137 [32] Zheng G H, Wei T. A new regularization method for a Cauchy problem of the time fractional diffusion equation. Adv Comput Math, 2012, 36:377-398 [33] Zhang H W. Modified quasi-boundary value method for a Cauchy problem of semi-linear elliptic equation. Int J Comput Math, 2012, 89:1689-1703 [34] Zheng G H, Wei T. Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl, 2010, 26:115017 [35] Li G S, Yao D, Jiang H Y, Jia X Z. Numerical inversion of a time-dependent reaction coefficient in a soil-column infiltrating experiment. Comp Model Eng Sci, 2011, 74:83-107 [36] Jin B T, Rundell W. A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl, 2015, 31:35-43 [37] Tatar S, Ulusoy S. An inverse source problem for a one-dimensional space-time fractional diffusion equation. Appl Anal, 2015, 94:2233-2244 [38] Tuan N H, Long L D. Fourier truncation method for an inverse source problem for space-time fractional diffusion equation. Electron J Differ Equ, 2017, 2017:1-16 [39] Podlubny I. Fractional differential equations:an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. San Diego:Academic Press Inc, 1999 [40] Kilbas A A, Srivastava H M, Trujillo J J. Theory and application of fractional differential equations (NorthHolland Mathematic Studies). Elsevier Science, 2006, 204:2453-2461 [41] Dang D T, Quan P H, Tuan N H. A quasi-boundary value method for regularizing nonlinear ill-posed problems. Electron J Differ Equ, 2009, 109:397-415 [42] Feng X L, Eldén L, Fu C L. A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomgenous Neumann data. J Inverse Ill-posed Probl, 2010, 18:617-645 [43] Feng X L, Ning W T, Qian Z. A quasi-boundary-value method for a Cauchy problem of an elliptic equation in multiple dimensions. Inverse Probl Sci Eng, 2014, 22:1045-1061 [44] Kirane M, Malik S A. Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time. Inverse Probl Sci Eng, 2011, 19:409-423 [45] Wei T, Wang J G. A modified quasi-boundary value method for the backward time-fractional diffusion problem. ESAIM-Math Model Num, 2014, 48:603-621 [46] Podlubny I. Fractional differential equations. San Diego:Academic Press Inc, 1998 [47] Luchko Y. Initial-boundary-value probelms for the one dimensional time-fractional diffusion equation. Fractional Calculus Appl Anal, 2012, 15:141-160 [48] Podlubny I, Kaccenak M. Mittag-Leffler function. The matlabroutine. http://www.mathworks.com/matlabcentral/fileexchange, 2006 |