[1] Anderson D M, McFadden G B, Wheeler A A. Diffuse-interface methods in fluid mechanics. Ann Rev Fluid Mech, 1998, 30:139-165 [2] Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. Berlin, Heidelberg:Springer, 2011 [3] Bresch D, Desjardins B, Lin C K. On some compressible fluid models:Korteweg, lubrication and shallow water systems. Comm Partial Differential Equations 2003, 28(3/4):843-868 [4] Cahn J W, Hilliard J E. Free energy of a nonuniform system, I Interfacial free energy. J Chem Phys, 1998, 28:258-267 [5] Cannone M. A generalization of a theorem by Kato on Navier-Stokes equations. Revista Matemática Iberoamericana, 1997, 13(3):515-541 [6] Chemin J Y. Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel. Journal d'Analyse Mathématique, 1999, 77:25-50 [7] Chemin J Y, Gallagher I, Paicu M. Global regularity for some classes of large solutions to the Navier-Stokes equations. Ann Math, 2008, 173(2):983-1012 [8] Chemin J Y, Lerner N. Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J Differential Equations, 1992, 121:314-328 [9] Charve F, Danchin R. A Global existence result for the compressible Navier-Stokes equations in the critical Lp framework. Arch Ration Mech Anal, 2010, 198:233-271 [10] Danchin R. Uniform estimates for transport-diffusion equations. J Hyperbolic Differ Equ, 2007, 4(1):1-17 [11] Danchin R, B Desjardins. Existence of solutions for compressible fluid models of Korteweg type. Ann Inst H Poincare Anal Non Lineaire, 2001, 18:97-133 [12] Dunn J E, Serrin J. On the thermomechanics of interstitial working. Arch Ration Mech Anal, 1985, 88(2):95-133 [13] Gurtin M E, Polignone D, Vinals J. Two-phase binary fluids and immiscible fluids described by an order parameter. Math Models Methods Appl Sci, 1996, 6(6):815-831 [14] Haspot B. Existence of global weak solution for compressible fluid models of Korteweg type. J Math Fluid Mech, 2011, 13(2):223-249 [15] Hattori H, Li D. Solutions for two dimensional system for materials of Korteweg type. SIAM J Math Anal, 1994, 25:85-98 [16] Hattori H, Li D. Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198(1):84-97 [17] Hmidi T. Régularité höldérienne des poches de tourbillon visqueuses. Journal de Mathématiques Pures et Appliquées, 2005, 84(11):1455-1495 [18] Korteweg D J. Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité. Arch Née Sci Exactes e Nat ser II, 1901, 6:1-24 [19] Kotschote M. Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincare Anal Non Lineaire, 2008, 25(4):679-696 [20] Tan Z, Wang Y J. Strong solutions for the incompressible fluid models of Korteweg type. Acta Mathematica Scientia, 2010, 30B(3):799-809 [21] Triebel H. Theory of Function Spaces. Monographs in Mathematics. Basel, Boston, Stuttgart:Birkhäuser Verlag, 1983 |