[1] Agrawal G P. Nonlinear Fiber Optics. Optics and Photonics. Academic Press, 2007
[2] Berestycki H, Cazenave T, et al. Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C R Acad Sci Paris, Séire I, 1981, 293:489-492
[3] Cazenave T. Semilinear Schrödinger Equations, Vol 10 of Courant Lecture Notes in Mathematics. New York:New York University, Courant Institute of Mathematical Sciences, 2003
[4] Cazenave T, Weissler F B, et al. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlin Anal, 1990, 14:807-836
[5] Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys, 1977, 18:1794-1797
[6] Kanna T, Sakkaravarthi K, et al. Multicomponent coherently coupled and incoherently coupled solitons and their collisions. J Phys A:Math Theor, 2011, 44:285211
[7] Kivshar Y S, Agrawal G P, et al. Optical Solitons:From Fibers to Photonic Crystals. San Diego, CA, Academic Press, 2003
[8] Li X G, Wu Y H, Lai S Y, et al. A sharp threshold of blow-up for coupled nonlinear Schrödinger equations. Journal of Physics A:Mathematical and Theoretical, 2010, 43:165025
[9] Ma L, Zhao L, et al. Sharp thresholds of blow-up and global existence for the coupled nonlinear Schrödinger system. J Math Phys, 2008, 49:062103
[10] Manakov S V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Journal of Experimental and Theoretical Physics, 1974, 38:248-253
[11] Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math J, 1993, 69:427-454
[12] Ogawa T, Tsutsumi Y, et al. Blow-up of H1 solution for the nonlinear Schrödinger equation. J Diff Eq, 1991, 92:317-330
[13] Sakkaravarthi K, Kanna T, et al. Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities. J Math Phys, 2013, 54:013701
[14] Sirakov B. Least energy solitary waves for a system of nonlinear Schrödinger equations in RN. Comm Math Phys, 2007, 271:199-221
[15] Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87:567-576
[16] Zhang J. Sharp threshold for blow-up and global existence in nonlinear Schrödinger equations under a harmonic potential. Commun PDE, 2005, 30:1429-1443 |