[1] Souplet P, Zhang Q. Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds. Bull London Math Soc, 2006, 38:1045-1053
[2] Zhu X B. Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds. Nonlinear Anal, 2011, 74:5141-5146
[3] Li P, Yau S T. On the parabolic kernel of the Schrödinger operator. Acta Math, 1986, 156:153-201
[4] Li J Y. Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J Funct Anal, 1991, 100:233-256
[5] Hamilton R S. A matrix Harnack estimate for the heat equation. Comm Anal Geom, 1993, 1:113-126
[6] Kotschwar B L. Hamilton's gradient estimate for the heat kernel on complete manifolds. Proc Amer Math Soc, 2007, 135(9):3013-3019
[7] Bailesteanu M, Cao X D, Pulemotov A. Gradient estimates for the heat equation under Ricci flow. J Funct Anal, 2010, 258:3517-3542
[8] Wu J. Gradient estimates for a nonlinear diffusion equation on complete manifolds. J Partial Differ Equ, 2010, 23(1):68-79
[9] Yang Y Y. Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc Amer Math Soc, 2008, 136:4095-4102
[10] Chen L, Chen W Y. Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds. Ann Global Anal Geom, 2009, 35(4):397-404
[11] Ma L, Zhao L, Song X. Gradient estimate for the degenerate parabolic equation ut=ΔF(u)+H(u) on manifolds. J Differential Equations, 2008, 244:1157-1177
[12] Ruan Q H. Elliptic-type gradient estimate for Schrödinger equations on noncompact manifolds. Bull Lond Math Soc, 2007, 39(6):982-988
[13] Wang L F. Elliptic type gradient estimates for the p-Laplace Schrödinger heat equation. Acta Math Sinica (Chin Ser), 2010, 53(4):643-654
[14] Wang M. Liouville theorems for the ancient solution of heat flows. Proc Amer Math Soc, 2010, 139(10):3491-3496
[15] Xu X. Gradient estimates for the degenerate parabolic equation ut=ΔF(u) on manifolds and some Liouville-type theorems. J Differential Equations, 2012, 252(2):1403-1420
[16] Yang Y Y. Gradient estimates for the equation Δu+cu-α=0 on Riemannian manifolds. Acta Math Sin (Engl Ser), 2010, 26(6):1177-1182
[17] Zhu X B. Hamilton's gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. Proc Amer Math Soc, 2011, 139:1637-1644
[18] Zhu X B. Hamilton's gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds. J Math Anal Appl, 2013, 402(1):201-206
[19] Calabi E. An extension of E. Hopf's maximum principle with an application to Riemannian geometry. Duke Math J, 1958, 25:45-56 |