数学物理学报(英文版) ›› 2010, Vol. 30 ›› Issue (5): 1555-1560.doi: 10.1016/S0252-9602(10)60148-8

• 论文 • 上一篇    下一篇

ELLIPTIC GRADIENT ESTIMATES FOR DIFFUSION OPERATORS ON COMPLETE RIEMANNIAN MANIFOLDS

钱斌   

  1. School |of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
    Institut de Mathématiques de Toulouse, Universit\'e de Toulouse, CNRS 5219, France
  • 收稿日期:2008-06-06 出版日期:2010-09-20 发布日期:2010-09-20
  • 基金资助:

    The author would  like to thank China Scholarship Council for financial support (2007U13020).

ELLIPTIC GRADIENT ESTIMATES FOR DIFFUSION OPERATORS ON COMPLETE RIEMANNIAN MANIFOLDS

 JIAN Bin   

  • Received:2008-06-06 Online:2010-09-20 Published:2010-09-20
  • Supported by:

    The author would  like to thank China Scholarship Council for financial support (2007U13020).

摘要:

In this note, we obtain the elliptic estimate for diffusion operator L = Δ + \nabla\phi\cdot\nabla$ on complete, noncompact Riemannian manifolds, under the curvature condition CD(K, m), which generalizes B. L. Kotschwar's work [5].  As an application, we get estimate on the heat kernel. The Bernstein-type gradient estimate for Schr\"odinger-type gradient is also derived.

关键词: gradient estimate, Bakry-Emery curvature, diffusion operator

Abstract:

In this note, we obtain the elliptic estimate for diffusion operator L = Δ + \nabla\phi\cdot\nabla$ on complete, noncompact Riemannian manifolds, under the curvature condition CD(K, m), which generalizes B. L. Kotschwar's work [5].  As an application, we get estimate on the heat kernel. The Bernstein-type gradient estimate for Schr\"odinger-type gradient is also derived.

Key words: gradient estimate, Bakry-Emery curvature, diffusion operator

中图分类号: 

  • 58J35