[1] Tsutsumi M. On solutions of some doubly nonlinear degenerate parabolic equations with absorption. J Math Anal Appl, 1988, 132: 187–212
[2] Dibenedetto E. Degenerate parabolic equations. New York: Springer-Verlag, 1993
[3] Zhou W S, Wu Z Q. Existence and nonuniqueness of weak solutions of the initial-boundary value problem for ut = uσdiv(|∇u|p−2∇u). J Northeast Math, 2005, 21: 189–206
[4] Ruzicka M. Electrorheological fluids: Modelling and Mathematical Theory. Lecture Notes in Math, 1748, Berlin: Springer, 2000
[5] Antontsev S N, Shmarev S I. Anisotropic parabolic equations with variable nonlinearity. Pub Math, 2009, 53: 355–399
[6] Antontsev S N, Shmarev S I. Parabolic equations with anisotropic nonstandard growth conditions. Internat Ser Numer Math, 2007, 154: 33–44
[7] Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66: 1383–1406
[8] Xu M, Chen Y Z. Hˇolder Continuity of Weak Solutions for Parabolic Equations with Nonstandard Growth Conditions. Acta Math Sinica, English Series, 2006, 22(3): 793–806
[9] Aboulaich R, Meskine D, Souissi A. New diffusion models in image processing. Comput Math Appl, 2008, 56: 874–882
[10] Guo B, Gao W J. Study of weak solutions for parabolic equations with nonstandard growth conditions. J Math Anal Appl, 2011, 374(2): 374–384
[11] Simon J, Compact sets in the space Lp(0, T;B). Ann Math Pura Appl, 1987, 146(4): 65–96
[12] Zhao J N. Existence and nonexistence of solutions for ut = div(|∇u|p−2∇u)+f(∇u, u, x, t). J Math Anal Appl, 1993, 172: 130–146 |