数学物理学报(英文版)

• 论文 • 上一篇    下一篇

THE EIGENVALUE PROBLEM FOR THE LAPLACIAN EQUATIONS

邵志强; 洪家兴   

  1. 福州大学数学系, 福州 350002
  • 收稿日期:2004-10-13 修回日期:2005-09-27 出版日期:2007-04-20 发布日期:2007-04-20
  • 通讯作者: 邵志强
  • 基金资助:

    This research was supported by the National Natural Science Foundation of China, the Scientific Research Foundation of the Ministry of Education of China (02JA790014), the Natural Science Foundation of Fujian Province Education Department(JB00078), and the Developmental Foundation of
    Science and Technology of Fuzhou University (2004-XQ-16)

THE EIGENVALUE PROBLEM FOR THE LAPLACIAN EQUATIONS

Shao Zhiqiang; Hong Jiaxing   

  1. Department of Mathematics, Fuzhou University, Fuzhou 350002, China
  • Received:2004-10-13 Revised:2005-09-27 Online:2007-04-20 Published:2007-04-20
  • Contact: Shao Zhiqiang

摘要:

This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u=-λu, $x\in \Omega$, $u=0$, $x\in\partial\Omega$, where $\Omega\subset R^{n}$ is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.

关键词: Dirichlet eigenvalue problem, gradient estimate, maximum principle, barrier function

Abstract:

This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u=-λu, $x\in \Omega$, $u=0$, $x\in\partial\Omega$, where $\Omega\subset R^{n}$ is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.

Key words: Dirichlet eigenvalue problem, gradient estimate, maximum principle, barrier function

中图分类号: 

  • 35P30