[1] Barbu V. Optimal Control of Variational Inequalities. Boston: Pitman, 1984
[2] Barbu V. Analysis and Control of Nonlinear Infinite-Dimensional Systems. New York: Academic Press, 1993
[3] Barbu V, Pavel N. Optimal control problems with two-point boundary conditions. J Optimiz Theory Appl, 1993, 77: 51-78
[4] Barbu V, Pavel N. Periodic optimal control in Hilbert space. Appl Math Optim, 1996, 33: 169-188
[5] Barbu V, Wang G. State constrained optimal control problems governed by semilinear equations. Numer Func Anal Opt, 2000, 21: 411-424
[6] Bensoussan A, Lions J L. Impulse Control and Quasi-Variational Inequalities. Paris: Bordas, 1984
[7] Kunisch K, Wang L. The bang-bang property of time optimal controls for the Burgers equation. Discrete Cont Dyn Syst Ser A, 2014, 34: 3611-3637
[8] Li X, Yong J. Necessary conditions of optimal control for distributed parameter systems. SIAM J Control Optim, 1991, 29: 895-908
[9] Li X, Yong J. Optimal Control Theory for Infinite Dimensional Systems. Boston: Birkhäuser, 1995
[10] Phung K D, Wang G. An observability estimate for parabolic equations from a measurable set in time and its applications. J Eur Math Soc, 2013, 15: 681-703
[11] Phung K D, Wang L, Zhang C. Bang-bang property for time optimal control of semilinear heat equation. Ann Inst H Poincaré, Analyse Non Linéaire, 2014, 31: 477-499
[12] Wang G. Optimal control of parabolic differential equations with two-point boundary state constraint. SIAM J Control Optim, 2000, 38: 1639-1654
[13] Wang G, Chen S. Maximum principle for optimal control of some parabolic systems with two point boundary conditions. Numer Func Anal Opt, 1999, 20: 163-174
[14] Wang G, Wang L. The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations. J Optim Theory Appl, 2003, 118: 429-461
[15] Wang L, He P. Selond-order optimality condisitons for optimal control problems govenned by 3-dimensional Navier-Stokes equations. Acta Math Sci, 2006, 26B: 729-734
[16] Yong J, Zhang P. Necessary conditions of optimal impulse controls for distributed parameter systems. Bull Aust Math Soc, 1992, 45: 305-326 |