[1] Wenger R B. The fine spectra of Holder summability operators. Indian J Pure Appl Math 6, 1975:695-712
[2] Rhoades B E. The fine spectra for weighted mean operators. Pacific J Math, 1983, 104(1):219-230
[3] Gonzales M. The fine spectrum of the Cesaro operator in lp, (1< p< ∞). Arch Math, 1985, 44:355-358
[4] Tripathy B C, Saikia P. On the spectrum of the Cesaro oprator C1 on bv ∩l∞. Math Slovaca, 2013, 63(3):563-572
[5] Co?kun C. The spectra and fine spectra for p-Cesaro operators. Turkish J Math, 1997, 21:207-212
[6] de Malafosse B. Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ. Hokkaido Math J, 2002, 31:283-299
[7] Altay B, Ba?ar F. On the fine spectrum of the difference operator Δ on c0 and c. Inform Sci, 2004, 168:217-224
[8] Akhmedov A M, Ba?ar F. On the fine spectrum of the Cesaro operator in c0. Math J Ibaraki Univ, 2004, 36:25-32
[9] Akhmedov A M, Ba?ar F. On the spectra of the difference operator Δ over the sequence space lp. Demonstratio Math, 2006, 39(3):585-595
[10] Akhmedov A M, Ba?ar F. On the fine spectra of the difference operator Δ over the sequence space bvp, (1 ≤ p<∞). Acta Math Sin (Engl Ser), 2007, 23(10):1757-1768
[11] Altay B, Ba?ar F. The fine spectrum and the matrix domain of the difference operator Δ on the sequence space lp, (0< p< 1). Commun Math Anal, 2007, 2:1-11
[12] Bilgiç H, Furkan H. On the fine spectrum of generalized difference operator B(r, s) over the sequence spaces lp and bvp. Nonlinear Anal, 2008, 68:499-506
[13] Tripathy B C, Paul A. Spectra of the operator B (f, g) on the vector valued sequence space c0(X). Bol Soc Parana Mat (3), 2013, 31(1):105-111
[14] Karakaya V, Manafov M Dzh, ?im?ek N. On the fine spectrum of the second order difference operator over the sequence spaces lp and bvp. Math Comput Modelling, 2012, 55(3):426-436
[15] Altun M, Karakaya V. Fine spectra of lacunary matrices. J Commun Math Anal, 2009, 7(1):1-10
[16] Karakaya V, Altun M. Fine spectra of upper triangular double-band matrices. J Comput Appl Math, 2010, 234:1387-1394
[17] Durna N, Y?ld?r?m M. Subdivision of the spectra for factorable matrices on c and lp. Math Commun, 2011, 16:519-530
[18] Rhoades B E, Y?ld?r?m M. The spectra and fine spectra of factorable matrices on c0. Math Commun, 2011, 16:265-270
[19] Ba?ar F. Summability Theory and Its Applications. Bentham Science Publishers, e-books, Monographs, Istanbul, 2012
[20] Tripathy B C, Das R. Spectra of the Rhaly operator on the sequence space bv0∩l∞. Bol Soc Parana Mat (3), 2014, 32(1):263-275
[21] Dündar E, Ba?ar F. On the fine spectrum of the upper triangle double band matrix Δ+ on the sequence space c0. Math Commun, 2013, 18:337-348
[22] Karaisa A, Ba?ar F. Fine spectra of the upper triangular triple band matrices over the sequence space lp, (0< p< ∞). Abstr Appl Anal, 2013, 2013. ID 342682
[23] Erdo?an E, Karakaya V. On spectral properties of a new operator over sequence spaces c and c0. Acta Math Sci Ser B Engl Ed, 2014, 34(5):1481-1494
[24] Kreyszig E. Introductory Functional Analysis with Applications. New York:John Wiley and Sons Inc, 1978
[25] Appell J, Pascale E, Vignoli A. Nonlinear Spectral Theory. de Gruyter Ser Nonlinear Anal Appl, Walter de Gruyter·Berlin·New York, 2004
[26] Wilansky A. Summability Through Functional Analysis. North-Holland Mathematics Studies, Vol 85. Amsterdam:North Holland, 1984
[27] Goldberg S. Unbounded Linear Operators. Mc Graw-Hill Book Comp, 1966
[28] Baliarsingh P, Dutta S. On the spectral properties of the weighted mean difference operator G(u, v;Δ) over the sequence space l1. Internat J Anal, 2014, 2014
[29] Polat H, Karakaya V and ?im?ek N. Difference sequences spaces derived by using a generalized weighted mean. Appl Math Lett, 2011, 24:608-614 |