[1] Clarkson J A. Uniformly convex spaces. Trans Amer Math Soc, 1936, 40: 396–414
[2] Huff R. Banach spaces which are nearly uniformly convex. Rocky Mountain J Math, 1980, 10(4): 743–749
[3] Rolewicz S. On -uniform convexity and drop property. Studia Math, 1987, 87(2): 181–191
[4] Montesinos V. Drop property equals reflexivity. Studia Math, 1987, 87(1): 93–100
[5] Kutzarova D. k-β and k-nearly uniformly convex Banach spaces. J Math Anal Appl, 1991, 162(2): 322–338
[6] Shiue J S. On the Ces`aro sequence space. Tamkang J Math, 1970, 2: 19–25
[7] Et M. On some generalized Ces`aro difference sequence spaces. ˙ Istanbul ¨Unv Fen Fak Mat Dergisi, 1996,
55/56: 221–229
[8] Freedman A R, Sember J J, Raphael M. Some Cesaro-type summability spaces. Proc London Math Soc, 1978, 37(3): 508–520
[9] Karakaya V. Some geometric properties of sequence spaces involving lacunary sequence. J Ineq Appl, 2007, 1007: 081028
[10] Sanhan W, Suantai S. Some geometric properties of Cesaro sequence space. Kyungpook Math J, 2003, 43(2): 191–197
[11] Sanhan W, Suantai S. On k-Nearly uniform convex property in generalized cesaro sequence spaces. Int J Math Math Sci, 2003, 2003(57): 3599–3907
[12] Sanhan W, Kananthai A, Musarleen M, Suantai S. On property (H) and rotundity of difference sequence spaces. J Nonlinear Convex Anal, 2002, 3(3): 401–409
[13] Wangkeeree R. On property (k-NUC) in Cesaro-Musielak-Orlicz sequence spaces. Thai J Math, 2003, 1: 119–130
[14] Petrot N, Suantai S. On uniform Kadec-Klee properties and rotundity in generalized Cesaro sequence spaces. International J Math Math Sci, 2004, (1–4): 91–97
[15] Sava¸s E, Karakaya V, S¸im¸sek N. Some ? (p)-type new sequence spaces and their geometric properties. Abstr Appl Anal, 2009, Art ID 696971, 12p
[16] Cui Y, Hudzik H. Some geometric properties related to fixed point theory in Ces`aro spaces. Collect Math, 1999, 50(3): 277–288
[17] S¸im¸sek N, Sava¸s E, Karakaya V. Some geometric and topological properties of a new sequence space defined
by de la Vall´ee-Poussin mean. J Comput Anal Appl, 2010, 12(4): 768–779
[18] K?zmaz H. On certain sequence spaces. Canad Math Bull, 1981, 24(2): 169–176
[19] Et M, Colak R. On generalized difference sequence spaces. Soochow J Math, 1995, 21(4): 377–386
[20] Altay B, Ba¸sar F. The fine spectrum and the matrix domain of the difference operator on the sequence space ?p, (0 < p < 1). Commun Math Anal, 2007, 2(2): 1–11
[21] Bhardwaj V K, Bala I. Generalized difference sequence space defined by | ¯N , pk| summability and an Orlicz function in seminormed space. Math Slovaca, 2010, 60(2): 257–264
[22] Et M. Spaces of Ces`aro difference sequences of order r defined by a modulus function in a locally convex space. Taiwanese J Math, 2006, 10(4): 865–879
[23] I¸s?k M. On statistical convergence of generalized difference sequences. Soochow J Math, 2004, 30(2): 197–205
[24] Savas E. m-Strongly summable sequences spaces in 2-normed spaces defined by ideal convergence andan Orlicz function. Appl Math Comput, 2010, 217: 271–276
[25] Srivastava P D, Kumar S. Generalized vector-valued paranormed sequence space using modulus function. Appl Math Comput, 2010, 215: 4110–4118
[26] Tripathy, B. C., Altin Y. and Et, M., Generalized difference sequence spaces on seminormed space defined by Orlicz functions. Math Slovaca, 2008, 58(3): 315–324
[27] Sengul H, Et M. On some geometric properties of generalized cesaro difference sequence spaces. Under
Communication |