[1] Altay B, Ba¸sar F. On some Euler sequence spaces of non-absolute type. Ukrainian Math J, 1999, 57: 1–17
[2] Altay B, Ba¸sar F. Mursaleen M. On the Euler sequence spaces which include the spaces ?p and ?1 I. Inform Sci, 2006, 10: 1450–1462
[3] Altay B, Ba¸sar F. On the paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bull Math, 2002, 26: 701–715
[4] Altay B, Ba¸sar F. Some paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bull Math, 2006, 30: 591–608
[5] Ba¸sar F, Altay B. Matrix mappings on the space bs(p) and its α-, β- and γ- duals. Aligarh Bull Math, 2002, 21(1): 79–91
[6] Ba¸sar F. Infinite matrices and almost boundedness. Boll Un Mat Ital, 1992, 6(7): 395–402
[7] Ba¸sar F, Altay B. On the space of sequences of p-bounded variation and related matrix mappings. Ukrainian Math J, 2003, 55(1): 136–147
[8] Choudhary B, Mishra S K. On K¨othe-Toeplitz duals of certain sequence spaces and their matrix transformations. Indian J Pure Appl Math, 1993, 24(5): 291–301
[9] Cui Y, Hudzik H. On the uniform Opial property in some modular sequence spaces. Funct Approx Comment, 1998, 26: 93–102
[10] Demiriz S, C¸ akan C. On some new paranormed Euler sequence spaces and Euler core. Acta Math Sin, English Series, 2010, 26(7): 1207–1222
[11] Diestel J. Geometry of Banach Spaces. Selected Topics. Berlin: Springer-Verlag, 1975
[12] Grosse-Erdmann K G. Matrix transformations between the sequence spaves of Maddox. J Math Anal Appl, 1993, 180: 223–238
[13] Gossez J P, Lami E D. Some geometric properties related to fixed point theory for nonexpensive mappings. Pacific J Math, 1972, 40: 565–573
[14] Kara E E, ¨Ozt¨urk M, Ba¸sar?r M. Some topological and geometric properties of generalized Euler sequence space. Mathematica Slovaca, 2010, 60(3): 1–14
[15] K?zmaz H. On certain sequence spaces. Canad Math Bull, 1981, 24(2): 169–176
[16] Khamsi M A. On Uniform Opial condition and Uniform Kadec-Klee property in Banach and metric spaces. Nonlinear Anal, 1996, 26(10): 1733–1748
[17] Lascarides C G, Maddox I J. Matrix transformations between some classes of sequences. Proc Camb Phil Soc, 1970, 68: 99–104
[18] Maddox I J. Elements of Functional Analysis. 2nd ed. Cambridge: Cambridge University Press, 1988
[19] Maddox I J. Paranormed sequence spaces generated by infinite matrices. Proc Camb Phios Soc. 1968, 64: 335–340
[20] Maligranda L. Orlicz Spaces and Interpolation. Ponzan: Ins Math, Polish Academy of Sciences, 1989
[21] Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces. Mat Vesnik, 1997, 49(1): 187–196
[22] Mursaleen M, Ba¸sar F, Altay B. On the Euler sequence spaces which include the spaces ?p an ?1 II. Nonlinear Anal, 2006, 65: 707–717
[23] Nakano H. Modulared sequence spaces. Proc Jpn Acad, 1951, 27(2): 508–512
[24] Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Amer Math Soc, 1967, 73: 591–597
[25] Prus S. Banach spaces with uniform Opial property. Nonlinear Anal, 1992, 18(8): 697–704
[26] Polat H, Ba¸sar F. Some Euler of difference sequences of order m. Acta Math Sci, 2007, 27B (2): 254–266
[27] Simons S. The sequence spaces ?(pv) and m(pv). Proc London Math Soc, 1965, 15(3): 422–436 |