[1] Ansari S I. Existence of hypercyclic operators on topological vector spaces. J Funct Anal, 1997, 148: 384--390
[2] Bernal-Gonzalez L. On hypercyclic operators in Banach spaces. Proc Amer Math Soc, 1999, 127: 1003--1010
[3] Biersted K D. An introduction to locally convex inductive limits//Hobge-Nlend H, eds. Functional Analysis and Its Applications. Singapore: World Sci, 1988: 35--133
[4] Bonet J, Peris A. Hypercyclic operators on non-normable Fr\'{e}chet spaces. J Funct Anal, 1998, 159: 587--595
[5] Gethner R M, Shapiro J H. Universal vectors for operators on spaces of holomorphic functions. Proc Amer Math Soc, 1987, 100: 281--288
[6] Godefroy G, Shapiro J H. Operators with dense, invariant, cyclic vector manifolds. J Funct Anal, 1991, 98: 229--269
[7] Grosse Erdmann K G. Universal families and hypercyclic operators. Bull Amer Math Soc, 1999, 36: 345--381
[8] Grosse Erdmann K G. Recent developments in hypercyclicity. Rev R Acad Cien Serie A Mat, 2003, 97: 273--286
[9] Horváth J. Topological Vector Spaces and Distributions, Vol 1. Reading, MA: Addison-Wesley, 1966
[10] K\"{o}the G. Topological Vector Spaces I. Berlin: Springer-Verlag, 1969
[11] Kucera J, Mckennon K. Dieudonn\'{e}-Schwartz theorem on bounded sets in inductive limits. Proc Amer Math Soc, 1980, 78: 366--368
[12] Li Ronglu, Cui Chengri, Chao Minhyung. Invariants on all admissible polar topologies. Chin Ann Math, 1998, 19A: 289--294 (in Chinese)
[13] Liu Peide. Foundations of Linear Topological Spaces. Wuhan: Wuhan University Press, 2002 (in Chinese)
[14] Pérez Carreras P, Bonet J. Barrelled Locally Convex Spaces. North-Holland Math Stud, Vol 131. Amsterdam: North-Holland, 1987
[15] Qiu Jinghui. Dieudonné-Schwartz theorem in inductive limits of metrizable spaces. Proc Amer Math Soc, 1984, 92: 255--257
[16] Qiu Jinghui. A general version of Kalton's closed graph theorem. Acta Math Sci, 1995, 15: 161--170
[17] Qiu Jinghui. Local completeness and dual local quasi-completeness. Proc Amer Math Soc, 2000, 129: 1419--1425
[18] Qiu Jinghui. Infra-Mackey spaces, weak barrelledness and barrelledness. J Math Anal Appl, 2004, 292: 459--469
[19] Rolewicz S. On orbits of elements. Studia Math, 1969, 32: 17--22
[20] Salas H. Hypercyclic weighted shifts. Trans Amer Math Soc, 1995, 347: 993--1004
[21] Saxon S A, Sánchez Ruiz L M. Dual local completeness. Proc Amer Math Soc, 1997, 125: 1063--1070
\REF{
[22]} Vogt D. Regularity properties of (LF)-spaces//Bierstedt K D, et al, eds.
Progress in Functional Analysis. North-Holland Math Stud, Vol 170. Amsterdam: North-Holland, 1992: 57--84
\REF{
[23]} Wengenroth J. Derived Functors in Functional Analysis. Berlin, Heidelberg: Springer-Verlag, 2003
\REF{
[24]} Wilansky A. Modern Methods in Topological Vector
Spaces. New York: McGraw-Hill, 1978 |