[1] Altay B. On the space of p-summable difference sequences of order m (1 ≤ p < ∞). Stud Sci Math Hungar,2006, 43(4): 387–402
[2] Altay B, Ba¸sar F. Some Euler sequence spaces of non-absolute type. Ukrainian Math J, 2005, 57(1): 1–17
[3] Altay B, Ba¸sar F, Mursaleen M. On the Euler sequence spaces which include the spaces lp and l∞. Inform Sci, 2006, 176(10): 1450–1462
[4] Altay B, Ba¸sar F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J Math Anal Appl, 2007, 336(1): 632–645
[5] Altay B, Ba¸sar F. The matrix domain and the fine spectrum of the difference operator on the sequence space lp (0 < p < 1). Commun Math Anal, 2007, 2(2): 1–11
[6] Ayd?n C, Ba¸sar F. On the new sequence spaces which include the spaces c0 and c. Hokkaido Math J, 2004, 33(2): 383–398
[7] Ayd?n C, Ba¸sar F. Some new paranormed sequence spaces. Inform Sci, 2004, 160(1-4): 27–40
[8] Ayd?n C, Ba¸sar F. Some new difference sequence spaces. Appl Math Comput, 2004, 157(3): 677–693
[9] Ayd?n C, Ba¸sar F. Some new sequence spaces which include the spaces lp and l∞. Demonstratio Math, 2005, 38(3): 641–656
[10] Ba¸sar F. Strongly–conservative sequence–to–series matrix transformations. Erc ¨Uni Fen Bil Derg, 1989, 5(12): 888–893
[11] Ba¸sar F. f–conservative matrix sequences. Tamkang J Math, 1991, 22(2): 205–212
[12] Ba¸sar F. Summability Theory and its Applications. Bentham Science Publishers, e-books, Monographs, Ístanbul-2012, ISBN: 978-1-60805-252-3
[13] Ba¸sar F, Altay B. On the space of sequences of p-bounded variation and related matrix mappings. Ukrainian Math J, 2003, 55(1): 136–147
[14] Ba¸sar F, Altay B, Mursaleen M. Some generalizations of the space bvp of p-bounded variation sequences. Nonlinear Anal, 2008, 68(2): 273–287
[15] Ba¸sar F, C¸ olak R. Almost-conservative matrix transformations. Turk J Math, 1989, 13(3): 91–100
[16] Ba¸sar F, Kiri¸s¸ci M. Almost convergence and generalized difference matrix. Comput Math Appl, 2011, 61(3): 602–611
[17] Ba¸sar F, Malkowsky E, Altay B. Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences. Publ Math, 2008, 73(1/2): 193–213
[18] Ba¸sar F, Solak Í. Almost-coercive matrix transformations. Rend Mat Appl, (7), 1991, 11(2): 249–256
[19] Ba¸sar?r M. On some new sequence spaces and related matrix transformations. Indian J Pure Appl Math, 1995, 26(10): 1003–1010
[20] Boos J. Classical and Modern Methods in Summability. New York: Oxford University Press Inc, 2000
[21] Candan M. Domain of the double sequential band matrix in the classical sequence spaces. JIA, 2012, 281(1): 1–15
[22] C¸ olak R, Et M, Malkowsky E. Some Topics of Sequence Spaces//Lecture Notes in Mathematics. Turkey: F?rat Univ Elˆaz??g, 2004: 1–63; F?rat Univ Press, 2004, ISBN: 975-394-038-6
[23] C¸ olak R, Et M. On some generalized difference sequence spaces and related matrix transformations. Hokkaido Math J, 1997, 26(3): 483–492
[24] Duran J P. Infinite matrices and almost convergence. Math Z, 1972, 128: 75–83
[25] Jarrah A M, Malkowsky E. BK spaces, bases and linear operators. Rendiconti Circ Mat Palermo II, 1990, 52: 177–191
[26] Kamthan P K, Gupta M. Sequence Spaces and Series. New York and Basel: Marcel Dekker Inc, 1981
[27] Kayaduman K, S¸eng¨on¨ul M. The spaces of Ces`aro almost convergent sequences and core theorems. Acta
Math Sci (in press)
[28] King J P. Almost summable sequences. Proc Amer Math Soc, 1966, 17: 1219–1225
[29] Kiri¸s¸ci M, Ba¸sar F. Some new sequence spaces derived by the domain of generalized difference matrix.
Comput Math Appl, 2010, 60(5): 1299–1309
[30] K?zmaz H. On certain sequence spaces. Canad Math Bull, 1981, 24(2): 169–176
[31] Lorentz G G. A contribution to the theory of divergent sequences. Acta Math, 1948, 80: 167–190
[32] Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces. Mat Vesnik, 1997,
49: 187–196
[33] Malkowsky E, Mursaleen, Suantai S. The dual spaces of sets of difference sequences of order m and matrix
transformations. Acta Math Sin Eng Ser, 2007, 23(3): 521–532
[34] Malkowsky E, Parashar S D. Matrix transformations in space of bounded and convergent difference sequence
of order m. Analysis, 1997, 17: 87–97
[35] Malkowsky E, Sava¸s E. Matrix transformations between sequence spaces of generalized weighted means.
Appl Math Comput, 2004, 147: 333–345
[36] Miller H I, Orhan C. On almost convergent and statistically convergent subsequences. Acta Math Hung,
2001, 93: 135–151
[37] Mursaleen M. Almost convergence and some related methods//Mursaleen M. Modern Methods of Analysis
and Its Applications. New Delhi: Anamaya Publ, 2010: 1–10
[38] Ng P -N, Lee P -Y. Ces`aro sequence spaces of non–absolute type. Comment Math Prace Mat, 1978, 20(2):
429–433
[39] ¨Ozt¨urk E. On strongly regular dual summability methods. Comm Fac Sci Univ Ank Ser A1 Math Statist,
1983, 32: 1–5
[40] Polat H, Ba¸sar F. Some Euler spaces of difference sequences of order m. Acta Math Sci, 2007, 27B(2):
254–266
[41] Rhoades B E. Some sequence spaces which include c0 and c. Hokkaido Math J, 2006, 35: 587–599
[42] S?dd?qi J A. Infinite matrices summing every almost periodic sequences. Pac J Math, 1971, 39(1): 235–251
[43] S¨onmez A. Some new sequence spaces derived by the domain of the triple band matrix. Comput Mat Appl,
2011, 62(2): 641–650
[44] S¨onmez A. Almost convergence and triple band matrix. Math Comput Model (in press)
[45] S¸eng¨on¨ul M, Ba¸sar F. Some new Ces`aro sequence spaces of non-absolute type which include the spaces c0
and c. Soochow J Math, 2005, 31(1): 107–119
[46] Wang C -S. On N¨orlund sequence spaces. Tamkang J Math, 1978, 9: 269–274 |