[1] Lin C J, Coulombel J F, Goudon T. Shock proflies for non-equilibrium radiating gases. Phys D, 2006, 218:83-94
[2] Lin C J, Coulombel J F, Goudon T. Asymptotic stability of shock proflies in radiative hydrodynamics. C R Math Acad Sci Paris, 2007, 345:625-628
[3] Mihalas D, Mihalas B. Foundation of Radiation Hydrodynamics. London:Oxford University Press, 1984
[4] Pomraning G C. The Equations of Radiation Hydrodynamics. New York:Pergamon Press, 1973
[5] Vincenti W, Kruger C. Introduction to Physical Gas Dynamics. New York:Wiley, 1965
[6] Kawashima S, Nishibata S. A singular limit for hyperbolic-parabolic coupled systems in radiation hydro-dynamics. Indiana Univ Math J, 2001, 50:567-589
[7] Hamer K. Nonlinear effects on the propagation of sound waves in a radiating gas. Quart J Mech Appl Math, 1971, 24:155-168
[8] Serre D. Systems of Conservation Laws, Vol 1. Cambridge:Cambridge University Press, 1999
[9] Smoller J. Shock Waves and Reaction-Diffusion Equations. New York:Springer-Verlag, 1994
[10] Atkinson F V, Peletier L A. Similarity solutions of the nonlinear diffusion equation. Arch Rational Meth Anal, 1974, 54:373-392
[11] Duyn C J, Peletier L A. A class of similarity solutions of the nonlinear diffusion equation. Nonlinear Anal, 1976/77, 1(3):223-233
[12] Wang J, Xie F. Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model. SIAM J Math Anal, 2011, 43:1189-1204
[13] Rohde C, Wang W J, Xie F. Hyperbolic-Hyperbolic relaxation limit for a 1D compreesible radiation hy-drodynamics model:superposition of rarefaction wave and contact wave. Commun Pure Appl Anal, 2013, 12:2145-2171
[14] Wang J, Xie F. Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system, J Differ Equ, 2011, 251:1030-1055
[15] Xie F. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete Contin Dyn Syst Ser B, 2012, 17:1075-1100
[16] Rohde C, Xie F. Decay rates to viscous contact wave for a 1D compressible radiation hydrodynamics model. Math Models Methods Appl Sci, 2013, 23:441-469
[17] Ma S X. Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations. J Differ Equ, 2010, 48:95-110
[18] Ma S X. Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations. J Math Anal Appl, 2012, 387:1033-1043
[19] Kawashima S, Nikkuni Y, Nishibata S. Larger-time behavior of solutions to hyperbolic-elliptic coupled systems. Arch Ration Mech Anal, 2003, 170:297-329
[20] Kawashima S, Nikkuni Y, Nishibata S. The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics//Analysis of Systems of Conservation Laws. Chapman and Hall/CRC, 1997:87-127
[21] Kawashima S, Nishibata S. Weak solutions with a shock to a model system of the radiating gas. Sci Bull Josai Univ, 1998, 5:119-130
[22] Kawashima S, Nishibata S. Cauchy problem for a model system of the radiating gas:weak solutions with a jump and classical solutions. Math Models Methods Appl Sci, 1999, 9:69-91
[23] Kawashima S, Nishibata S. Shock waves for a model system of a radiating gas. SIAM J Math Anal, 1999, 30:95-117
[24] Lattanzio C, Marcati P. Golobal well-posedness and relaxation limits of a model for radiating gas. J Differ Equ, 2003, 190:439-465
[25] Lattanzio C, Mascia C, Serre D. Shock waves for radiative hyperbolic-elliptic systems. Indiana Univ Math J, 2007, 56:2601-2640
[26] Huang F M, Li M J, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for the 1-D com-pressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44:1742-1759
[27] Huang F M, Li X. Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations. Chin Ann Math Ser B, 2012, 33:385-394
[28] Gao W L, Zhu C J. Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions. Math Models Methods Appl Sci, 2008, 18:511-541
[29] Gao W L, Ruan L Z, Zhu C J. Decay rates to the planar rarefaction waves for a model system of the radiating gas in n dimensions. J Differ Equ, 2008, 244:2614-2640
[30] Lin C J. Asymptotic stability of rarefaction waves in radiative hydrodynamics. Commun Math Sci, 2011, 9:207-223
[31] Xiao Q H, Liu Y N, Kim J S. Asymptotic behavior of rarefaction waves for a model system of a radiating gas. J Inequal Appl, 2012, Art ID:81
[32] Nguyen T, Plaza R G, Zumbrun K. Stability of radiative shock profiles for hyperbolic-elliptic coupled systems. Phys D, 2010, 239:428-453
[33] Francesco M Di. Initial value problem and relaxation limits of the Hamer model for radiating gases in several space variables. NoDEA Nonlinear Differential Equations Appl, 2007, 13:531-562
[34] Hong H, Huang F M. Asymptotic behavior of solutions toward the superposition of contout discontinuity and shock wave for compressible Navier-Stokes equations with free boundary. Acta Math Sci, 2012, 32B(1):389-412
[35] Xin Z P. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases. Comm Pure Appl Math, 1993, 46:621-665 |