[1] Date E, Jimbo M, Kashiwara M, Miwa T. Transformation groups for soliton equations//Jimbo M, Miwa T. Nonlinear Integrable Systems-Classical Theory and Quantum Theory. Singapore:World Scientific, 1983:39-119
[2] Dickey L A. Soliton Equations and Hamiltonian Systems. 2nd ed. Singapore:World Scientific, 2003
[3] Witten E. Two dimensional gravity and intersection theory on moduli space. Surveys Diff Geom, 1991, 1:243-310
[4] Kontsevich M. Intersection theory on the moduli space of curves and the matrix Airy function. Comm Math Phys, 1992, 147:1-23
[5] Adler M, van Moerbeke P. A matrix integral solutionto two-dimensional Wp gravity. Comm Math Phys, 1992, 147:25-56
[6] Kac V. Infinite Dimensional Lie Algebras. 3rd ed. Cambridge Univ Press, 1990
[7] Jimbo M, Miwa T. Solitons and infinite dimensional Lie algebras. Publ RIMS, Kyoto Univ, 1983, 19:943-1001
[8] Cheng Y, Li Y S. The constraint of the KP equation and its special solutions. Phys Lett A, 1991, 157:22-26
[9] Konopelchenko B, Sidorenko J, Strampp W. (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems. Phys Lett A, 1991, 157:17-21
[10] Cheng Y. Constraints of the KP hierarchy. J Math Phys, 1992, 33:3774-3782
[11] Li C Z, Tian K L, He J S, Cheng Y. The recursion operator for a constrained CKP hierarchy. Acta Math Sci, 2011, 31B(4):1295-1302
[12] Chau L L, Shaw J C, Yen H C. Solving the KP hierarchy by gauge transformations. Comm Math Phys, 1992, 149:263-278
[13] Oevel W. Darboux theorems and Wronskian formulas for integrable system I:constrained KP flows. Physica A, 1993, 195:533-576
[14] Aratyn H, Nissimov E, Pacheva S. Darboux-Backlund solutions of SL(p, q) KP-KdV hierarchies, constrained generalized Toda lattices, and two-matrix string model. Phys Lett A, 1995, 201:293-305
[15] Chau L L, Shaw J C, Tu M H. Solving the constrained KP hierarchy by gauge transformations. J Math Phys, 1997,38:4128-4137
[16] Willox R, Loris I, Gilson C R. Binary Darboux transformations for constrained KP hierarchies. Inverse Problems, 1997, 13:849-865
[17] He J S, Li Y S and Cheng Y. Two choices of the gauge transformation for the AKNS hierarchy through the constrained KP hierarchy. J Math Phys, 2003, 44:3928-3960
[18] Nimmo J J C. Darboux transformations from reductions of the KP hierarchy//Makhankov V G, Bishop A R, Holm D D. Nonlinear Evolution Equations and Dynamical Systems. Singapore:World Scientific, 1995:168-177
[19] He J S, Wu Z W, Cheng Y. Gauge transformations for the constrained CKP and BKP hierarchies. J Math Phys, 2007, 48:113519
[20] Oevel W. Darboux transformations for integrable lattice systems//Alfinito E, Martina L, Pempinelli F. Nonlinear Physics:Theory and Experiment. Singapore:World Scientific, 1996:233-240
[21] Liu S W, Cheng Y, He J S. The determinant representation of the gauge transformation for the discrete KP hierarchy. Sci China Math, 2010, 53:1195-1206
[22] Tu M H, Shaw J C, and Lee C R. On Darboux-Backlund transformations for the q-deformed Korteweg-de Vries hierarchy. Lett Math Phys, 1999, 49:33-45
[23] He J S, Li Y H and Cheng Y. q-deformed KP hierarchy and q-deformed constrained KP hierarchy. SIGMA, 2006, 2:060
[24] Chen H H, Lee Y C and Lin J E. On a new hierarchy of symmetry for the Kadomtsev-Petviashvili equation. Physica D, 1983, 9:439-445
[25] Orlov A Yu, Schulman E I. Additional symmetries for integrable systems and conformal algebra repesentation. Lett Math Phys, 1993, 12:171-179
[26] Adler M, Shiota T, van Moerbeke P. A Lax representation for the vertex operator and the central extension. Comm Math Phys, 1995, 171:547-588
[27] Dickey L A. On additional symmetries of the KP hierarchy and Sato's Bäcklund transformation. Comm Math Phys, 1995, 167:227-233
[28] Takasaki K. Toda lattice hierarchy and generalized string equations. Comm Math Phys, 1996, 181:131-156
[29] Tu M H. On the BKP hierarchy:Additional symmetries, Fay identity and Adler-Shiotavan Moerbeke formula. Lett Math Phys, 2007, 81:91-105
[30] He J S, Tian K L, Foerster A, Ma W X. Additional symmetries and string equation of the CKP hierarchy. Lett Math Phys, 2007, 81:119-134
[31] Cheng J P, Tian K L, He J S. The additional symmetries for the BTL and CTL hierarchies. J Math Phys, 2011, 52:053515
[32] Li C Z, He J S. Dispersionless bigraded Toda hierarchy and its additional symmetry. Rev Math Phys, 2012, 24:1230003
[33] Li C Z, He J S, Su Y C. Block type symmetry of bigraded Toda hierarchy. J Math Phys, 2012, 53:013517
[34] van Moerbeke P. Integrable fundations of string theory//Babelon O, Cartier P, Kosmann-Schwarzbach Y. Lectures on Integrable Systems. Singapore:World Scientific, 1994:163-267
[35] Aratyn H, Nissimov E, Pacheva S. Virasoro symmetry of constrained KP hierarchies. Phys Lett A, 1997, 228:164-175
[36] Tian K L, He J S, Cheng J P, Cheng Y. Additional symmetries of constrained CKP and BKP hierarchies. Sci China Math, 2011, 54:257-268
[37] Shen H F, Tu M H. On the constrained B-type Kadomtsev-Petviashvili hierarchy:Hirota bilinear equations and Virasoro symmetry. J Math Phys, 2011, 52:032704
[38] Oevel W and Rogers C. Gauge transformations and reciprocal links in 2+1 dimensions. Rev Math Phys, 1993, 5:299-330
[39] Enriquez B, Orlov A Yu, Rubtsov V N. Dispersionful analogues of Benney's equations and N-wave systems. Inverse Problems, 1996, 12:241-250 |