[1] Camassa R, Holm D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71(11): 1661–1664
[2] Chen M, Liu S Q, Zhang Y. A two-component generalization of the Camassa-Holm equation and its solutions. Lett Math Phys, 2006, 75(1): 1–15
[3] Constantin A, Ivanov R. On an integrable two-component Camassa-Holm shallow water system. Phys Lett A, 2008, 372(48): 7129–7132
[4] Dullin H R, Gottwald G A, Holm D D. Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dynam Res, 2003, 33(2): 73–79
[5] Dullin H R, Gottwald G A, Holm D D. On asymptotically equivalent shallow water wave equations. Phys D, 2004, 190: 1–14
[6] Deng Y, Xiang J, Yang T. Blowup phenomena of solutions to Euler-Poisson equations. J Math Anal Appl, 2003, 286(1): 295–306
[7] Escher J, Kohlmann M, Lenells J. The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations. J Geom Phys, 2011, 61(2): 436–452
[8] Falqui G. On a Camassa-Holm type equation with two dependent variables. J Phys A, 2006, 39(2): 327–342
[9] Fu Y, Qu C Z. Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons. J Math Phys, 2009, 50(1): 012906
[10] Fu Y, Liu Y, Qu C Z. Well-posedness and blow-up solution for a modified two component periodic Camassa-Holm system with peakons. Math Ann, 2010, 348(2): 415–448
[11] Fu Y, Qu C Z. Unique continuation and persistence properties of solutions of the 2-component degasperis-procesi equations. Acta Mathematica Scientia, 2012, 32B(2): 652–662
[12] Gui G L, Liu Y. On the global existence and wave-breaking criteria for the two-component Camassa-Holm system. J Funct Anal, 2010, 258(12): 4251–4278
[13] Guan C X, Yin Z Y. Global existence and blow-up phenomena for an integrable twocomponent Camassa-Holm shallow water system. J Diff Equ, 2010, 248(8): 2003–2014
[14] Ivanov R. Water waves and integrability. Philos Trans Roy Soc Lond A, 2007, 365: 2267–2280
[15] Johnson R S. Camassa-Holm, Korteweg-de Vries and related models for water waves. J Fluid Mech, 2002, 455: 63–82
[16] Jin L B, Guo Z G. On a two-component Degasperis-Procesi shallow water system. Nonl Anal RWA, 2010, 11(5): 4164–4173
[17] Lai S Y, Wu Y H. Global solutions and blow-up phenomena to a shallow water equation. J Diff Equ, 2010, 249(3): 693–706
[18] Lakin W D, Sanchez D A. Topics in Ordinary Differential Equations. New York: Dover Pub Inc, 1982
[19] Liu J J, Yin Z Y. On the Cauchy problem of a two-component b-family system. Nonl Anal RWA, 2011, 12(6): 3608–3620
[20] Mu C L, Zhou S M, Zeng R. Well-posedness and blow-up phenomena for a higher order shallow water equation. J Diff Equ, 2011, 251(12): 3488–3499
[21] Mustafa O G. On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system. Wave Motion, 2009, 46(6): 397–402
[22] Ni L D. The Cauchy problem for a two-component generalized -equations. Nonl Anal TMA, 2010, 73(5): 1338–1349
[23] Popowicz Z. A 2-component or N = 2 supersymmetric Camassa-Holm equation. Phys Lett A, 2006, 354: 110-114
[24] Popowicz Z. A two-component generalization of the Degasperis-Procesi equation. J Phys A, 2006, 39(44): 13717–13726
[25] Yang L E, Ji Y S, Guo B L. The relation of two-dimensional viscous Camassa-Holm equations and the navier-stokes equations. Acta Mathematica Scientia, 2009, 29B(1): 65–73
[26] Yuen M W. Self-similar blowup solutions to the 2-component Camassa-Holm equations. J Math Phys, 2010, 51(7): 093524
[27] Yuen M W. Self-similar blowup solutions to the 2-component Degasperis-Procesi shallow water. Commun Nonlinear Sci Numer Simul, 2011, 16(9): 3463–3469
[28] Yuen M W. Analytical blowup solutions to the 2-dimensional isothermal Euler-Poisson equations of gaseous stars. J Math Anal Appl, 2008, 341(1): 445–456
[29] Zhang P Z, Liu Y. Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system. Int Math Res Not, 2010, 11: 1981–2021
[30] Zhou J, Tian L X, Fan X F. Soliton, kink and antikink solutions of a 2-component of the Degasperis-Procesi equation. Nonl Anal RWA, 2010, 11(4): 2529–2536
[31] Zhou SM, Mu C L. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2013, 33(4): 1713–1739
|