[1] Lions P L. Mathematical topics in fluid mechanics. Incompressible Models. Vol. 1. Oxford Lecture Series in Mathematics and Its Applications, 10. 1996
[2] Ladyzhenskaya O, Solonnikov V A. Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids. J Soviet Math, 1978, 9: 697--749
[3] Salvi R. The equations of viscous incompressible non-homogeneous fluids: on the existence and regularity. J Austral Math Soc, 1991, 33B: 94--110
[4] Simon J. Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J Math Anal, 1990, 21(5): 1093--1117
[5] Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids. Commun Partial Differential Equations, 2003, 28: 1183--1201
[6] Korteweg D J. Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothése d'une variation continue de la densité. Archives Néerlandaises de Sciences Exactes et Naturelles, 1901: 1--24
[7] Sy M, et al. Local strong solution for the incompressible Korteweg model. Comptes rendus Math\'ematique, 2006, 342(3): 169--174
[8] Teman R. Navier-Stokes equations and nonlinear functional analysis. CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, SIAM, 1983
[9] Kim J U. Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density. SIAM J Math Anal, 1987, 18: 89--96
[10] Giaquinta M, Modica G. Nonlinear systems of the type of the stationary Navier-Stokes system. J Reine Angew Math, 1982, 330: 173--214
[11] Bresch D, Desjardins B, Lin C K. On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems, Commun. Partial Differential Equations, 2003, 28: 1009--1037 |