[1] Adler R J. An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. IMS Lecture Notes–Monograph Series, 12. Hayward, CA: Inst Math Stat, 1990
[2] Adler R J, Pyke R. Uniform quadratic variation for Gaussian processes. Stochastic Process Appl, 1993, 48: 191–209
[3] Bardina X, Bascompte D. Weak convergence towards two independent Gaussian process from a unique poisson process. Collect Math, 2010, 61: 191–204
[4] Birkner M, Z¨ahle I. A functional CLT for the occupation time of a state-dependent branching random walk. Ann Probab, 2007, 35: 2063–2090
[5] Bojdecki T, Gorostiza L G, Talarczyk A. Sub-fractional Brownian motion and its relation to occupation times. Statist Probab Lett, 2004, 69: 405–419
[6] Bojdecki T, Gorostiza L G, Talarczyk A. Limit theorems for occupation time fluctuations of branching systems I: long-range dependence. Stochastic Process Appl, 2006, 116: 1–18
[7] Bojdecki T, Gorostiza L G, Talarczyk A. Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron Commun Probab, 2007, 12: 161–172
[8] Bojdecki T, Gorostiza L G, Talarczyk A. Particle systems with quasi-homogeneous initial states and their occupation time fluctuations. Electron Commun Probab, 2010, 15: 191–202
[9] Bojdecki T, Talarczyk A. Particle picture interpretation of some Gaussian processes related to fractional Brownian motion. Stochastic Process Appl, 2010, 122: 2134–2154
[10] Cs´aki E, Cs¨org?o M, Shao Q M. Fernique type inequalities and moduli of continuity for l2-valued Ornstein-Uhlenbeck processes. Ann Inst Henri Poincar´e Probab Statist, 1992, 28: 479–517
[11] Dzhaparidze K, Van Zanten H. A series expansion of fractional Brownian motion. Probab Theory Relat Fields, 2004, 103: 39–55
[12] Gin´e E, Klein R. On quadratic variation of processes with Gaussian increments. Ann Probab, 1975, 3: 716–721
[13] L´evy P. Le mouvement Brownien plan. Amer J Math, 1940, 62: 487–550
[14] Liu J, Li L, Yan L. Sub-fractional model for credit risk pricing. Int J Nonlinear Sci Numer Simul, 2010, 11: 231–236
[15] Liu J, Yan L. Remarks on asymptotic behavior of weighted quadratic variation of subfractional Brownian motion. J Korean Statist Soc, 2012, 41: 177–187
[16] Lo´eve L. Probability Theory I. New York: Springer, 1977
[17] Marcus M B, Rosen J. P-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments. Ann Probab, 1992, 20: 1685–1713
[18] Monrad D, Rootz´en H. Small values of Gaussian processes and functional laws of the iterated logarithm. Probab Theory Relat Fields, 1995, 101: 173–192
[19] Nourdin I. Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion. Ann Probab, 2008, 36: 2159–2175
[20] Samorodnitsky G, Taqqu M S. Stable non-Gaussian Random Process: Stochastic model with infinite variance. New York: Chapman Hall, 1994
[21] Shen G, Yan L. Remarks on sub-fractional Bessel Precesses. Acta Math Sci, 2011, 31B(5): 1860–1876
[22] Shen G, Chen C. Stochastic integration with respect to the sub-fractional Brownian motion with H 2 (0, 12 ). Statist Probab Lett, 2012, 82: 240–251
[23] Taqqu M S. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z Wahrsch Verw Gebiete, 1975, 31: 287–302
[24] Tudor C A, Xiao Y. Sample path properties of bifractional Brownian motion. Bernoulli, 2007, 13: 1023–1052
[25] Tudor C. Some properties of the subfractional brownian motion. Stochastics, 2007, 79: 431–448
[26] Tudor C. Some aspects of stochastic calculus for the subfractional Brownian motion. Ann Univ Bucuresti Mathematica, 2008, LVII: 199–230
[27] Wang W. On p-variation of bifractional Brownian motion. Appl Math J Chinese Univ, 2011, 26(2): 127–141
[28] Yan L, Shen G, He K. Itˆo formula for the subfractional Brownian motion. Commun Stoch Anal, 2011, 5: 135–159
[29] Yan L, Shen G. On the collision local time of subfractional Brownian motions. Statist Probab Lett, 2010, 80: 296–308 |