[1] Barky D, Emery M. Diffusions hypercontractives//S´eminaire de Probabilit´es, Lecture Notes in Mathemat-ics, 1123. Springer-Verlag, 1985
[2] Bobkov S G, and G?otze F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J Funct Analysis, 1999, 163: 1–28
[3] Djellout H, Guillin A,Wu L M. Transportation cost-information inequalities for random dynamical systems and diffusions. Ann Probab, 2004, 32B(3): 2702–2732
[4] Gozlan N, L´eonard C. A large deviation approach to some transportation cost inequalities. Probab Theory Relat Fields, 2007, 139: 235–283
[5] Guillin A, L´eonard C, Wu L M, Yao N. Transportation-information inequalities for Markov processes. Probab Theory Relat Fields, 2009, 144(3/4): 669–695
[6] Ledoux M. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Providence RI: American Mathematical Society, 2001
[7] Ma Y T. Transportation inequalities for stochastic differential equations with jumps. Stoch Proc Appl, 2010, 120(1): 2–21
[8] Ma Y T. Convex concentration inequalities for contiuuous gas and stochastic domination. Acta Math Sci, 2009, 29B(5): 1461–1468
[9] Marton K. Bounding the ¯ d-distance by information divergence: A method to prove concentration inequal-ities. Ann Probab, 1996, 24: 857–866
[10] McDiarmid C. On the method of bounded differences//Siemons J, ed. Survey of Combinatorics. Lecture Notes Ser, 141. London Math Soc, 1989: 148–188
[11] Rio E. In´egalit´e de Hoeffding pour les fonctions Lipschitzienne de suites d´ependantes. C R Acad Sci Paris S´er I Math, 2000, 330: 905–908
[12] Villani C. Topics in Optimal Transportation. Graduates Studies in Mathematics 58. Providence RI: Amer Math Soc, 2003
[13] Wu L M. Transportation inequalities for stochastic differential equations of pure jumps. Ann I H P Stat Probab, 2010, 46(2): 465–479 |