• 论文 • 上一篇
杨长森
Yang Changsen
摘要:
Furuta showed that if A ≥ B ≥0, then for each r≥0, f(p)=(Ar/2BpAr/2)t+r/p+r
is decreasing for p≥t≥0. Using this result, the following inequality (Cr/2AB2A)δCr/2)p-1+r/4δ+r≤Cp-1+r is obtained for 0<p≤1, r≥1, 1/4≤δ≤1 and three positive operators A, B, C satisfy (A1/2 B A1/2)p/2 ≤ Ap, (B1/2 AB1/2)p/2 ≥ Bp, (C1/2 AC1/2)p/2 ≤Cp, (A1/2 CA1/2)p/2≥Ap.
中图分类号: