[1] Guo Z H, Jiang S, Xie F. Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient. Asympotic Analysis, 2008, 60: 101--123
[2] Guo Z H, Zhu C J. Remarkes on one-dimensional compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Acta Mathematica Sinica, English Series, 2010, 26(10): 2015--2030
[3] Guo Z H, Zhu C J. Global weak solutions and asympotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum. J Differ Equ, 2010, 248: 2768--2799
[4] Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39: 1402--1427
[5] Hoff D. Global existence for 1D compressible isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data. Proc Roy Soc Edinburgh Sect A, 1986, 103: 301--305
[6] Hoff D.Strong convergence to global solutions for multidimensional flows of compressible, viscous fludies with polytropic equations of state and discontinuous initial data. Arch Rational Mech Anal, 1995, 132: 1--14
[7] Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math, 1991, 51: 887--898
[8] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 38: 861--915
[9] Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics
[D]. Kyoto, Japan: Kyoto University, 1983
[10] Kawashima S, Nishida T. Global solutions to the initial value problem for the equations of one-dimensional motion of viscous
polytrpic gases. J Math Kyoto Univ, 1981, 21: 825--837
[11] Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discrete Contin Dynam Systems, 1998, 4: 1--32
[12] Luo T, Xin Z P, Yang T. Interface behavior of compressible Navier-stokes equations with vacuum. SIAM J Math Anal, 2000, 31(6): 1175--1191
[13] Makina T. On a local existence theorem for the evolution equations of gaseous stars//Nishida T, Mimura H, Fujii H, eds. Patterns and Wave-Qualtiative Anlysis of Nonlinear Differential equations. Amsterdam: North-Holland, 1986: 459--479
[14] Nishida T. Equations of fluid dynamics-free surface problems. Comm Pure Appl Math, 1986, 39: 221--238
[15] Okada M, Matusu-Necasova S, Makino T. Free boundary problem for the equation of one dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII (N.S.) 2002, 48: 1--20
[16] Okada M. Free boundary problem for the equation of one dimensional motion of viscous gas. Japan J Appl Math, 1989, 6: 161--177
[17] Okada M, Makino T. Free boundary problem for the equation of spherically symmetrical motion of viscous gas. Japan J Appl Math, 1993, 10: 219--235
[18] Serre D. Sur l'equation mondimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris sèr 1 Math, 1986, 303: 703--706
[19] Serre D. Solutions faibles globales des equations de Navier-Stokes equations pour un fluide compressible. C R Acad Sci Paris sér 1 Math, 1986, 303: 639--642
[20] Xin Z. Blow-up of smooth solutions to the comprssible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51: 229--240
[21] Xin Z. Zero dissipation limit to rarefaction Waves for one-dimensional Navier-Stokes equations for compressible isentropic gases. Comm Pure Appl Math, 1993, 46: 621--665
[22] Yang T, Zhao H J. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent
viscocity. J Diff Eqns, 2002, 184: 163--184
[23] Yao L, Wang W J. Compressible Navier-Stokes equations with density-dependent viscosity, vacuum and gravitational force in the case of general pressure. Acta Math Sci, 2008, 28B(4): 801--817 |