[1] Arbogast T, Brunson D S. A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput Geosci, 2007, 11:207-218 [2] Beavers G, Joseph D. Boundary conditions at a naturally impermeable. J Fluid Mech, 1967, 30:197-207 [3] Cao Y, Gunzburger M, Hu X, Hua F, Wang X, Zhao W. Finite element approxi-mation for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J Numer Anal, 2010, 47:4239-4256 [4] Cao Y, Gunzburger M, Hua F, Wang X. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Comm Math Sci, 2010, 8:1-25 [5] Chen N, Gunzburger M, Wang X. Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system. J Math Anal Appl, 2010, 368:658-676 [6] Discacciati M. Domain decomposition methods for the coupling of surface and groundwater flows. École Polytechnique Fédérale de Lausanne, 2004 [7] Discaaaiati M, Quarteroni A, Valli A. Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J Numer Anal, 2007, 45:1246-1268 [8] Galvis J, Sarkis M. Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems. Proceedings of the 16th International Conference on Domain Decomposition Methods, 2005 [9] Girault V, Rivière B. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-JosephSaffman interface condition. SIAM J Numer Anal, 2009, 47:2052-2089 [10] Hua F. Modeling, Analysis and Simulation of Stokes-Darcy System with Beavers-Joseph Interface Condition. The Florida State University, 2009 [11] Layton W J, Schieweck F, Yotov I. Coupling fluid flow with porous media flow. SIAM J Numer Anal, 2003, 40:2195-2218 [12] Mu M, Xu J C. A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J Numer Anal, 2007, 45:1801-1813 [13] Mu M, Zhu X H. Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math Comput, 2010, 79:707-731 [14] Rui H, Zhang R. A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput Methods Appl Mech Eng, 2009, 198:2692-2699 [15] Urquiza J M, N'dri D, Garon A, Delfour M C. Coupling Stokes and Darcy equations. Appl Numer Math, 2008, 58:525-538 [16] Cai M C, Mu M, Xu J C. Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J Numer Anal, 2009, 47:3325-3338 [17] Chen W, Chen P, Gunzburger M, Yan N. Superconvergence analysis of FEMs for the Stokes-Darcy system. Math Methods Appl Sci, 2010, 33:1605-1617 [18] Chidyagwai P, Rivière B. A two-grid method for coupled free flow with porous media flow. Adv Water Resour, 2011, 34:1113-1123 [19] Zuo L Y, Hou Y R. A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the BeaversJoseph interface condition. Numer Methods Partial Differ Eqns, 2014, 3:1066-1082 [20] Zuo L Y, Hou Y R. A two-grid decoupling method for the mixed Stokes-Darcy model. J Comput Appl Math, 2015, 275:139-147 [21] Zuo L Y, Hou Y R. Numerical analysis for the mixed Navier-Stokes and Darcy problem with the BeaversJoseph interface condition. Numer Methods Partial Differ Eqns, 2015, 31:1009-1030 [22] Du G, Hou Y R, Zuo L Y. A modified local and parallel finite element method for the mixed Stokes-Darcy model. J Math Anal Appl, 2016, 435:1129-1145 [23] Du G, Hou Y R, Zuo L Y. Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model. Int J Comput Math, 2016, 93:1155-1172 [24] He Y N, Xu J C, Zhou A H, Li J. Local and parallel finite element algorithms for the Stokes problem. Numer Math, 2008, 109:415-434 [25] He Y N, Xu J C, Zhou A H. Local and parallel finite element algorithms for the Navier-Stokes problem. J Comput Math, 2006, 24:227-238 [26] Liu Q F, Hou Y R. Local and parallel finite element algorithms for time-dependent convection-diffusion equations. Appl Math Mech Engl Ed, 2009, 30:787-794 [27] Lions J L, Magenes E. Problems aux Limites non Homogenes et Applications, Vol 1. Paris:Dunod, 1968 [28] Ma F. Ma Y, Wo W. Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl Math Mech, 2007, 28:27-35 [29] Xu J C, Zhou A H. Some local and parallel properties of finite element discretizations. Proceedings for Eleventh International Conference on Domain Decomposition Methods, 1999:140-147 [30] Xu J C, Zhou A H. Local and parallel finite element algorithms based on two-grid discretizations. Math Comput, 1999, 69:881-909 [31] Xu J C, Zhou A H. Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problem. Adv Computat Math, 2001, 14:293-327 [32] Yao Z A, Zhao H X. Homogenization of a stationary Navier-Stokes flow in porous medium with thin film. Acta Math Sci, 2008, 28B(4):963-974 |