数学物理学报(英文版) ›› 2010, Vol. 30 ›› Issue (4): 1219-1226.doi: 10.1016/S0252-9602(10)60118-X

• 论文 • 上一篇    下一篇

THE BANACH-LIE GROUP OF LIE TRIPLE AUTOMORPHISMS OF AN |H*-ALGEBRA

 A. J.Calderon Martí1, C.Martín González2   

  1. 1. Departamento de Matemáticas, Universidad de Cádiz. 11510 Puerto Real, Cádiz, Spain|2. Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Apartado 59, 29080 Málaga, Spain
  • 收稿日期:2007-11-10 修回日期:2008-10-07 出版日期:2010-07-20 发布日期:2010-07-20
  • 基金资助:

    Supported by the PCI of the UCA `Teorí a de Lie y Teor\'\i a de Espacios de Banach',  the PAI with project numbers FQM-298 and FQM-336, and  the project of the Spanish Ministerio de Educaci\'on y Ciencia MTM2004-06580-C02-02 and with fondos FEDER

THE BANACH-LIE GROUP OF LIE TRIPLE AUTOMORPHISMS OF AN |H*-ALGEBRA

 A. J.Calderon Martí1, C.Martín González2   

  • Received:2007-11-10 Revised:2008-10-07 Online:2010-07-20 Published:2010-07-20
  • Supported by:

    Supported by the PCI of the UCA `Teorí a de Lie y Teor\'\i a de Espacios de Banach',  the PAI with project numbers FQM-298 and FQM-336, and  the project of the Spanish Ministerio de Educaci\'on y Ciencia MTM2004-06580-C02-02 and with fondos FEDER

摘要:

We  study the Banach-Lie group Ltaut}(A) of Lie triple automorphisms of a complex associative H*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0=Aut(A) implying Ltder(A)= Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.

关键词: Banach-Lie group, Lie triple automorphism, Lie triple derivation

Abstract:

We  study the Banach-Lie group Ltaut}(A) of Lie triple automorphisms of a complex associative H*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0=Aut(A) implying Ltder(A)= Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.

Key words: Banach-Lie group, Lie triple automorphism, Lie triple derivation

中图分类号: 

  • 47B47