[1] Anderson J. On normal derivations. Proc Amer Math Soc, 1973, 38: 135–140
[2] Bachir A, Segres A. Numerical range and orthogonality in normed spaces. Filmat, 2009, 23: 21–41
[3] Bachman G, Narici L. Functional Analysis. New York: Academic Press, 2000
[4] Benitez C. Orthogonality in normed linear spaces: a classification of the different concepts and some open problems. Revista Mathematica, 1989, 2: 53–57
[5] Bhattacharya D K, Maity A K. Semilinear tensor product of ??-Banach algebras. Ganita, 1989, 40(2): 75–80
[6] Bonsall F, Duncan J. Complete Normed Algebra. New York: Springer-Verlag, 1973
[7] Bonyo J O, Agure J O. Norm of a derivation and hyponormal operators. Int J Math Anal, 2010, 4(14): 687–693
[8] Bouali S,Bouhafsi Y. On the range of the elementary operator X 7→ AXA − X. Math Proc Royal Irish Academy, 2008, 108: 1–6
[9] Cabrera M, Rodriguez A. Nondegenerately ultraprime Jordan Banach algebras. Proc London Math Soc, 1994, 69: 576–604
[10] Canavati J A, Djordjevic S V, Duggal B P. On the range closure of an elementary operator. Bull Korean Math Soc, 2006, 43: 671–677
[11] Du H K, Ji G X. Norm attainability of elementary operators and derivations. Northeast Math J, 1994, 3: 394–400
[12] Du H K, Wang Y Q, Gao G B. Norms of elementary operators. Proc Amer Math Soc, 2008, 4: 1337–1348
[13] Dutta T K, Nath H K, Kalita R C. -derivations and their norms in projective tensor products of ??-Banach algebras. J London Math Soc, 1998, 2(2): 359–368
[14] Franka M B. Tensor products of C-algebras, operator spaces and Hilbert C-modules. Math Comm, 1999, 4: 257–268
[15] Gajendragadkar P. Norm of derivations of von-Neumann algebra. J Trans Amer Math Soc, 1972, 170: 165–170
[16] Gohberg I C, Krein M G. Introduction to the Theory of Linear Nonselfadjoint Operators. Transl Math Monogr, Vol 18. Providence, RI: Amer Math Soc, 1969
[17] Helemskii A. Lectures and exercises on Functional Analysis. Translation of Mathematical Monographs, Vol 233. New York: American Mathematical Society, 2006
[18] Iain R, Dana P W. Equivalence and Continuous-Trace C-Algebras. New York: American Mathematical Society, 1998
[19] Kadison R, Lance C, Ringrose J. Derivations and automorphisms of operator algebra II. Math J Funct Anal, 1967, 1: 204–221
[20] Keckic D J. Orthogonality in C1 and C1 spaces and normal derivations. J Operator Theory, 2004, 51: 89–104
[21] Keckic D J. Orthogonality of the range and kernel of some elementary operators. Proc Amer Math Soc, 2008, 11: 3369–3377
[22] Kittaneh F. Normal derivations in normal ideals. Proc Amer Math Soc, 1995, 6: 1979–1985
[23] Kreyzig E. Introductory Functional Analysis with Applications. New York: John Wiley and Sons, 1978
[24] Kyle J. Norms of derivations. J London Math Soc, 1997, 16 297–312
[25] Magajna B. The norm of a symmetric elementary operator. Proc Amer Math Soc, 2004, 132: 1747–1754
[26] Mathieu M. Properties of the product of two derivations of a C-algebra. Canad Math Bull, 1990, 42: 115–120
[27] Mathieu M. More properties of the product of two derivations of a C-algebra. Canad Math Bull, 1990, 42: 115–120
[28] Mathieu M. Elementary operators on Calkin algebras. Irish Math Soc Bull, 2001, 46: 33–42
[29] Masamichi T. Theory of Operator Algebras I. New York: Springer-Verlag, 1979
[30] Mecheri S. On the range and kernel of the elementary operators nPi=1AiXBi − X. Acta Math Univ Com-nianae, 2003, 52: 119–126
[31] Mecheri S. Finite operators. Demonstratio Math, 2002, 35: 355–366
[32] Murphy J G. C-algebras and Operator Theory. London: Academic Press Inc, Oval Road, 1990
[33] Turnsek A. Orthogonality in Cp classes. Monatsh Math, 2001, 132: 349–354
[34] Williams J P. Finite operators. Proc Amer Math Soc, 1970, 26: 129–135 |