[1] Ahlfors L V.An extension of Schwarz's lemma. Trans Amer Math Soc, 1938, 43: 359-364 [2] Aladro G, Krantz S G.A criterion for normality in $\mathbb{C}^{m}$. J Math Anal Appl, 1991, 161: 1-8 [3] Alarcón A, López F J.On harmonic quasiconformal immersions of surfaces in $\mathbb{R}^{3}$. Trans Amer Math Soc, 2013, 365(4): 1711-1742 [4] An D P, Quang S D, Thai D D.The second main theorem for meromorphic mappings into a complex projective space. Acta Math Vietnam, 2013, 38(1): 187-205 [5] Campana F, Winkelmann J.A Brody theorem for orbifolds. Manuscripta Math, 2009, 128(2): 195-212 [6] Chen X D, Li Y Z, Liu Z X, Ru M.Curvature estimate on an open Riemann surface with induced metric. Math Z, 2021, 298(1/2): 451-467 [7] Chen X D, Liu Z X, Ru M.Value distribution properties for the Gauss maps of the immersed harmonic surfaces. Pacific J Math, 2020, 309(2): 267-287 [8] Fujimoto H.Modified defect relations for the Gauss map of minimal surfaces. II. J Differential Geom, 1990, 31(2): 365-385 [9] Fujimoto H. On the number of exceptional values of the Gauss maps of minimal surfaces. J Math Soc Japan, 1988, $\mathbf{ 40}$(2): 235-247 [10] Fujimoto H.Value Distribution Theory the Gauss Map of Minimal Surfaces in $\mathbb{R}^{m}$. Braunschweig: Vieweg Teubner Verlag, 1993 [11] Ha P H.An estimate for the Gaussian curvature of minimal surfaces in $\mathbb{R}^{m}$ whose Gauss map is ramified over a set of hyperplanes. Differential Geom Appl, 2014, 32: 130-138 [12] Jensen G R, Rigoli M.Harmonically immersed surfaces of $\mathbb{R}^{n}$. Trans Amer Math Soc, 1988, 307(1): 363-372 [13] Kalaj D.The Gauss map of a hamonic surface. Indag Math (NS), 2013, 24(3): 415-427 [14] Kalaj D, Vujadinović D.Quasiconformal harmonic graphs. Complex Var Elliptic Equ, 2023, 68(8): 1407-1418 [15] Klotz T.Surfaces harmonically immersed in $E^{3}$. Pacific J Math, 1967, 21(1): 79-87 [16] Klotz T.A complete $R_{\varLambda}$-harmonically immersed surface in $E^{3}$ on which $H\not=0$. Proc Amer Math Soc, 1968, 19: 1296-1298 [17] Liu X J, Pang X C.Normal family theory and Gauss curvature estimate of minimal surfaces in $\mathbb{R}^{m}$. J Differential Geom, 2016, 103(2): 297-318 [18] Liu Z X, Li Y Z, Chen X D. The value distribution of Gauss maps of immersed harmonic surfaces with ramification. Acta Math Sci, 2022, $\mathbf{42B}$(1): 172-186 [19] Lu C H, Chen X D.Unicity theorem for generalized Gauss maps of immersed harmonic surfaces. J Math Anal Appl, 2023, 519: 126827 [20] Milnor T K.Are harmonically immersed surfaces at all like minimally immersed surfaces?// Seminar on Minimal Submanifolds. Princeton: Princeton University Press, 1983: 99-110 [21] Milnor T K.Harmonically immersed surfaces. J Differential Geom, 1979, 14(2): 205-214 [22] Milnor T K.Restrictions on the curvatures of $\Psi$-bounded surfaces. J Differential Geom, 1976, 11(1): 31-46 [23] Osserman R, Ru M.An estimate for the Gauss curvature of minimal surfaces in $\mathbb{R}^{m}$ whose Gauss map omits a set of hyperplanes. J Differential Geom, 1997, 46: 578-593 [24] Quang S D.Curvature estimate and the ramification of the holomorphic maps over hypersurfaces on Riemann surfaces. Bull Soc Math France, 2023, 151(1): 91-115 [25] Quang S D.Modified defect relation of Gauss maps on annular ends of minimal surfaces for hypersurfaces of projective varieties in subgeneral position. J Math Anal Appl, 2024, 23(1): 127806 [26] Quang S D.Modified defect relation of Gauss maps of minimal surfaces for hypersurfaces of projective varieties in subgeneral position. arXiv:2107.08986 [27] Ru M.Gauss map of minimal surfaces with ramification. Trans Amer Math Soc, 1993, 339(2): 751-764 [28] Ru M.Nevanlinna Theory and Its Relation to Diophantine Approximation. Hackensack, NJ: World Scientific Publishing, 2021 [29] Ru M.On the Gauss map of minimal surfaces immersed in $\mathbb{R}^{n}$. J Differential Geom, 1991, 34(2): 411-423 |