[1] Bahouri H, Chemin J Y, Danchin R.Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer, 2011 [2] Berry R S, Rice S A, Ross J. Physical Chemistry.Oxford: Oxford University Press, 2000 [3] Bird G A.Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994 [4] Bony J M. Calcul symbolique et propagation des singularités pouréquations aux dérivées partielles nonlinéaires. Annales Scinentifiques de l'école Normale Supérieure, 1981, 14: 209-246 [5] Dafermos C M.Hyperbolic Conservation Laws in Continuum Physics. Berlin: Springer-Verlag, 2016 [6] Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent math, 2000, 141: 579-614 [7] De Anna F, Liu C. Non-isothermal general Ericksen-Leslie system: derivation, analysis and thermodynamic consistency. Arch Ration Mech Anal, 2019, 231: 637-717 [8] De Anna F, Liu C, Schlömerkemper A, Sulzbach J E.Temperature dependent extensions of the Cahn-Hilliard equation. arXiv:2112.14665v1 [9] Feireisl E. Asymptotic analysis of the full Navier-Stokes-Fourier system: From compressible to incompressible fluid flows. Russian Mathematical Surveys, 2007, 62: 511-533 [10] Feireisl E, Novotný A. Weak-strong uniqueness property for the full navier-stokes-fourier system. Arch Rational Mech Anal, 2012, 204: 683-706 [11] Feireisl E, Novotný A. On a simple model of reacting compressible flows arising in astrophysics. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2005, 135: 1169-1194 [12] Feireisl E, Novotný A. Weak sequential stability of the set of admissible variational solutions to the Navier-Stokes-Fourier system. SIAM J Math Anal, 2005, 37: 619-650 [13] Feireisl E. Concepts of Solutions in the Thermodynamics of Compressible Fluids//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 1353-1379 [14] Fujita H, Kato T. On the Navier-Stokes initial value problem, I. Arch Ration Mech Anal, 1964, 16: 269-315 [15] Giga M H, Kirshtein A, Liu C. Variational Modeling and Complex Fluids//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 73-113 [16] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996 [17] Hsieh C Y, Lin T C, Liu C, Liu P. Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system. J Differential Equations, 2020, 269: 7287-7310 [18] Hyon Y, Kwak D Y, Liu C. Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin Dyn Syst, 2010, 26: 1291-1304 [19] Kreml O, Pokorny M. On the local strong solutions for a system describing the flow of a viscoelastic fluid. Banach Center Publlications, 2009, 86(1): 195-206 [20] Lai N A, Liu C, Tarfulea A. Positivity of temperature for some non-isothermal fluid models. J Differential Equations, 2022, 339: 555-578 [21] Liu C, Sulzbach J E. The Brinkman-Fourier system with ideal gas equilibrium. Discrete & Continuous Dynamical Systems, 2022, 42: 425-462 [22] Liu C, Sulzbach J E. Well-posedness for the reaction-diffusion equation with temperature in a critical Besov space. J Differential Equations, 2022, 325: 119-149 [23] McQuarrie D A. Statistical Mechanics. New York: Harper & Row, 1976 [24] Novotný A, Petzeltová H. Weak Solutions for the Compressible Navier-Stokes Equations: Existence, Stability,Longtime Behavior//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 1381-1546 [25] Tarfulea A. Improved a priori bounds for thermal fluid equations. Transactions of the Amer Math Soc, 2019, 371: 2719-2737 [26] Zeytounian R K.Asymptotic Modeling of Fluid Flow Phenomena. Dordrecht: Kluwer, 2002 |