[1] Adams D R. A note on Riesz potentials. Duke Math J, 1975, 42: 765-778 [2] Adams R C, Fournier J R. Sobolev Spaces. Amsterdam: Elsevier, 2003 [3] Chang S Y A, Wang L, Yang P C. A regularity theory of biharmonic maps. Commun Pure Appl Math, 1999, 52(9): 1113-1137 [4] Du H, Kang Y, Wang J.Morrey regularity theory of Rivière's equation. Proc Amer Math Soc, 2023. DOI: https://doi.org/10.1090/proc/16143 [5] Gastel A. The extrinsic polyharmonic map heat flow in the critical dimension. Adv Geom, 2006, 6: 501-521 [6] Giaquinta M.Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton, NJ: Princeton University Press, 1983 [7] Guo C Y, Wang C, Xiang C L. $L^p$-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions. Calc Var Partial Differential Equations, 2023, 62: Art 31 [8] Guo C Y, Xiang C L. Regularity of solutions for a fourth order linear system via conservation law. J Lond Math Soc, 2020, 101: 907-922 [9] Guo C Y, Xiang C L. Regularity of weak solutions to higher order elliptic systems in critical dimensions. Tran Amer Math Soc, 2021, 374: 3579-3602 [10] Guo C Y, Xiang C L, Zheng G F. The Lamm-Riviere system I: $L^p$ regularity theory. Calc Var Partial Differential Equations, 2021, 60: Art 213 [11] Guo C Y, Xiang C L, Zheng G F. $L^p$ regularity theory for even order elliptic systems with antisymmetric first order potentials. J Math Pures Appl, 2022, 165: 286-324 [12] Lamm T. Heat flow for extrinsic biharmonic maps with small initial energy. Ann Global Anal Geom, 2004, 26: 369-384 [13] Lamm T, Rivière T. Conservation laws for fourth order systems in four dimensions. Comm Partial Differential Equations, 2008, 33: 245-262 [14] Laurain P, Rivière T. Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications. Anal PDE, 2014, 7: 1-41 [15] Rivière T. Conservation laws for conformally invariant variational problems. Invent Math, 2007,168: 1-22 [16] Rivière T, Struwe M. Partial regularity for harmonic maps and related problems. Comm Pure Appl Math, 2008, 61: 451-463 [17] Sharp B, Topping P. Decay estimates for Rivière's equation, with applications to regularity and compactness. Trans Amer Math Soc, 2013, 365: 2317-2339 [18] Struwe M. Partial regularity for biharmonic maps, revisited. Calc Var Partial Differential Equations, 2008, 33: 249-262 [19] Wang C. Heat flow of biharmonic maps in dimensions four and its application. Pure Appl Math Q, 2007, 3: 595-613 [20] Wang C. Remarks on approximate harmonic maps in dimension two. Calc Var Partial Differential Equations, 2017, 56: Art 23 [21] Wang C Y. Biharmonic maps from $R^{4}$ into a Riemannian manifold. Math Z, 2004, 247: 65-87 [22] Wang C Y. Stationary biharmonic maps from $R^m$ into a Riemannian manifold. Comm Pure Appl Math, 2004, 57: 419-444 |