[1] Bell S R, Boas H P. Regularity of the Bergman projection and duality of holomorphic function spaces. Math Ann, 1984, 267: 473-478 [2] Boas H P. The Szegö projection: Sobolev estimates in regular domains. Trans Amer Math Soc, 1987, 300: 109-132 [3] Chakrabarti D, Laurent-Thiébaut C, Shaw M C. On the $L^2$-Dolbeault cohomology of annuli. Indiana Univ Math J, 2018, 67: 831-857 [4] Chakrabarti D, Shaw M C. $L^2$ Serre duality on domains in complex manifolds and applications. Trans Amer Math Soc, 2012, 364: 3529-3554 [5] Chakrabarti D, Harrington P. Exact sequences and estimates for the $\bar{\partial}$-problem. Math Z, 2021, 299: 1837-1873 [6] Chen S C, Shaw M C.Partial differential equations in several complex variables. Providence, RI: Amer Math Soc, 2001 [7] Fu S Q, Shaw M C. Sobolev estimates and duality for $\bar{\partial}$ on domains in $\mathbb{C}P^n$. Pure Appl Math Q, 2022, 18: 503-529 [8] Hörmander L. $L^2$ estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math, 1965, 113: 89-152 [9] Huang X J, Li X S. $\bar{\partial}$-equation on a lunar domain with mixed boundary conditions. Trans Amer Math Soc, 2016, 368: 6915-6937 [10] Laurent-Thiébaut C, Leiterer J. On Serre duality. Bull Sci Math, 2000, 124: 93-106 [11] Laurent-Thiébaut C, Shaw M C. On the Hausdorff property of some Dolbeault cohomology groups. Math Z, 2013, 274: 1165-1176 [12] Li X S, Shaw M C. The $\bar{\partial}$-equation on an annulus with mixed boundary conditions. Bull Inst Math Acad Sin, 2013, 8: 399-411 [13] Lions J L, Magenes E.Non-Homogeneous Boundary Value Problems and Applications: Volume I. New York: Springer-Verlag, 1972 [14] Shaw M C. The closed range property for $\bar{\partial}$ on domains with pseudoconcave boundary//Ebenfelt P, Hungerbühler N, Kohn J, et al. Complex Analysis. Basel: Birkhäuser, 2010: 307-320 [15] Shaw M C. Duality between harmonic and Bergman spaces//Barkatou Y, Berhanu S, Meziani A, et al. Geometric Analysis of Several Complex Variables and Related Topics. Providence, RI: Amer Math Soc, 2011: 161-171 [16] Shaw M C. Topology of Dolbeault cohomology groups//Feehan P, Song J, Weinkove B, Wentworth R. Analysis, Complex Geometry,Mathematical Physics: In Honor of Duong H. Phong. Providence, RI: Amer Math Soc, 2015: 211-225 [17] Straube E J.Lectures on the $L^2$-Sobolev theory of the $\bar{\partial}$-Neumann problem. ESI Lectures in Mathematics and Physics. Zürich: European Mathematical Society (EMS), 2010 [18] Shi Z M, Yao L D.Existence of solutions for $\bar{\partial}$-equation in Sobolev spaces of negative index. arXiv: 2111.09245 |