[1] Adams D R. A note on Riesz potentials. Duke Math, 1975, 42: 765–778
[2] Akbulut A, Guliyev V S, Mustafayev R. On the Boundedness of the maximal operator and singular integral
operators in generalized Morrey spaces. Math Bohem, 2012, 137(1): 27–43
[3] Alphonse A M. An end point estimate for maximal commutators. J Fourier Anal Appl, 2000, 6(4): 449–456
[4] Burenkov V, Gogatishvili A, Guliyev V S, Mustafayev R. Boundedness of the fractional maximal operator
in local Morrey-type spaces. Complex Var Elliptic Equ, 2010, 55(8–10): 739–758
[5] Fefferman C. The uncertainty principle. Bull Amer Math Soc, 1983, 9: 129–206
[6] Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark Mat, 1975, 13:
161–207
[7] Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes, 28. Princeton: Princeton
Univ Press, 1982
[8] Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton,
NJ: Princeton Univ Press, 1983
[9] Guliyev V S. Integral operators on function spaces on the homogeneous groups and on domains in Rn (in
Russian) [D]. Moscow: Mat Inst Steklova, 1994: 1–329
[10] Guliyev V S. Function spaces, Integral Operators and TwoWeighted Inequalities on Homogeneous Groups.
Some Applications (Russian). Baku: ELM, 1996
[11] Guliyev V S. Boundedness of the maximal, potential and singular operators in the generalized Morrey
spaces. J Inequal Appl, 2009, Art ID 503948, 20 pp.
[12] Guliyev V S, Mustafayev R. Fractional integrals in spaces of functions defined on spaces of homogeneous
type. Anal Math, 1998, 24(3): 181–200
[13] Guliyev V S, Aliyev S, Karaman T, Shukurov P. Boundedness of sublinear operators and commutators on
generalized Morrey spaces. Integral Equations Operator Theory, 2011, 71(3): 327–355
[14] Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratics
forms. Trans Amer Math Soc, 1980, 258: 147–153
[15] Kurata K, Sugano S. A remark on estimates for uniformly elliptic operators on weighted Lp spaces and
Morrey spaces. Math Nachr, 2000, 209: 137–150
[16] Li H Q. Estimations Lp des operateurs de Schr¨odinger sur les groupes nilpotents. J Funct Anal, 1999,
161: 152–218
[17] Liu Yu. The weighted estimates for the operators V (−G + V )− and V ∇G(−G + V )− on the
stratified Lie group G. J Math Anal Appl, 2009, 349: 235–244
[18] Lu G Z. A FeffermanPhong type inequality for degenerate vector fields and applications. Panamer Math
J, 1996, 6: 37–57
[19] Lu G, Lu Sh, Yang D, Singular integrals and commutators on homogeneous groups. Anal Math J, 2002,
28: 103–143
[20] Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc,
1938, 43: 126–166
[21] Nakai E. Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized
Morrey spaces. Math Nachr, 1994, 166: 95–103
[22] Nakai E. The Campanato, Morrey and H¨older spaces on spaces of homogeneous type. Studia Math, 2006,
176 (1): 1–19
[23] Polidoro S, Ragusa M A. Holder regularity for solutions of ultraparabolic equations in divergence form.
Potential Analysis, 2001, 14(4): 341–350
[24] Shen Z W. Lp estimates for Schr¨odinger operators with certain potentials. Ann Inst Fourier (Grenoble),
1995, 45: 513–546
[25] Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton,
New Jersey: Princeton Univ Press, 1993
[26] Str¨omberg J O, Torchinsky A.Weighted Hardy Spaces. Lecture Notes in Math, Vol 1381. Berlin: Springer-
Verlag, 1989
[27] Sugano S. Estimates for the operators V (− + V )− and V ∇(− + V )− with certain nonnegative
potentials V . Tokyo J Math, 1998, 21: 441–452
[28] Varopoulos N, Saloff-Coste L, Coulhon T. Analysis and Geometry on Groups. Cambridge Univ Press,
1992
[29] Zhong J P. Harmonic analysis for some Schr¨odinger type operators [D]. Princeton University, 1993 |