[1] Khoshnevisan D. Intersections of Brownian motions. Expos Math, 2003, 21: 97-114 [2] Taylor S J. The measure theory of random fractals. Math Proc Camb Philos Soc, 1986, 100: 383-406 [3] Rosen J. The intersection local time of fractional Brownian motion in the plane. J Multivariate Anal, 1987, 23: 37-46 [4] Xiao Y. Random fractals and Markov processes//Lapidus M L, van Frankenhuijsen M. Fractal Geometry and Application: A Jubilee of Benoit Mandelbrot. Providence: American Mathematical Society, 2004: 261-338 [5] Li Y, Xiao Y. Multivariate operator-self-similar random fields. Stoch Process Appl, 2011, 121: 1178-1200 [6] Luan N, Xiao Y. Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields. J Fourier Anal Appl, 2012, 18: 118-145 [7] Mason D J, Xiao Y. Sample path properties of operator self-similar Gaussian random fields. Theor Probab Appl, 2002, 46: 58-78 [8] Ni W.Studies on Sample Properties of Anistropic Random Fields [D]. Hangzhou: Zhejiang Gongshang University, 2018 [9] Xiao Y. Sample path properties of anisotropic Gaussian random fields// Khoshnevisan D, Rassoul-Agha F. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics1962. New York: Springer, 2009: 145-212 [10] Xiao Y. Recenct developments on fractal properties of Gaussian random fields//Barral J, Seuret S. Further Developments in Fractals and Related Fields. New York: Springer, 2013: 255-288 [11] Nualart E, Viens F.Hitting probabilities for general Gaussian processes. arXiv:1305.1758 [12] Ni W, Chen Z. Hitting probabilities of a class of Gaussian random fields. Statist Probab Lett, 2016, 118: 145-155 [13] Biermé H, Lacaux C, Xiao Y. Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull London Math Soc, 2009, 41: 253-273 [14] Chen Z, Xiao Y. On intersections of independent anisotropic Gaussian random fields. Sci China Math, 2012, 55: 2217-2232 [15] Ni W, Chen Z.Hitting probabilities and dimension results for space-time anisotropic Gaussian fields (in Chinese). Sci Sin Math, 2018, 48: 419-442 [16] Chen Z, Xiao Y.Local times and Hausdorff dimensions of inverse images of Gaussian vector fields with space-anisotropy (in Chinese). Sci Sin Math, 2019, 49: 1487-1500 [17] Dvoretzky A, Erdös P, Kakutani S. Double points of paths of Brownian motion in $n$-space. Acta Sci Math, 1950, 12: 75-81 [18] Kahane J P. Points multiples des processus de Lévy symétriques stables restreints à un ensemble de valurs du temps. Sém Anal Harm, Orsay, 1983, 38: 74-105 [19] Kahane J P.Some Random Series of Functions. Cambridge: Cambridge University Press, 1985 [20] Khoshnevisan D, Xiao Y. Lévy processes: capacity and Hausdorff dimension. Ann Probab, 2005, 33: 841-878 [21] Evans S N. Potential theory for a family of several Markov processes. Ann Inst Henri Poincaré Probab Stat, 1987, 23: 499-530 [22] Tongring N. Which sets contain multiple points of Brownian motion? Math Proc Cambridge Philos Soc, 1988, 103: 181-187 [23] Fitzsimmons P J, Salisbury T S. Capacity and energy for multiparameter processes. Ann Inst Henri Poincaré Probab Stat, 1989, 25: 325-350 [24] Peres Y. Probability on trees: an introductory climb//Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math 1717. Berlin: Springer, 1999: 193-280 [25] Dalang R C, Khoshnevisan D, Nualart E, et al. Critical Brownian sheet does not have double points. Ann Probab, 2012, 40: 1829-1859 [26] Chen Z.Multiple intersections of independent random fields and Hausdorff dimension (in Chinese). Sci China Math, 2016, 46: 1279-1304 [27] Chen Z, Wang J, Wu D. On intersections of independent space-time anisotropic Gaussian fields. Statist Probab Lett, 2020, 166: 108874 [28] Wang J, Chen Z. Hitting probabilities and intersections of time-space anisotropic random fields. Acta Math Sci, 2022 42B(2): 653-670 [29] Falconer K J.Fractal Geometry-Mathematical Foundations and Applications. Chichester: John Wiley and Sons Ltd, 1990 [30] Khoshnevisan D.Multiparameter Processes: An Introduction to Random Fields. New York: Springer-Verlag, 2002 |