[1] Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in one dimension. Commun Pure Appl Anal, 2004, 3(4): 675-694 [2] Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Methods Appl Sci, 2006, 29(10): 1081-1106 [3] Guo Z H, He W. Interface behavior of compressible Navier-Stokes equations with discontinuous boundary conditions and vacuum. Acta Math Sci, 2011, 31B(3): 934-952 [4] Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39(5): 1402-1427 [5] Guo Z H, Jiang S, Xie F. Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient. Asymptot Anal, 2008, 60(1/2): 101-123 [6] Guo Z H, Zhu C J.Remarks on one-dimensional compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Acta Math Sin Engl Ser, 2009, 26(10): 2015-2030 [7] Guo Z H, Zhu C J. Global weak solutions and asympotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum. J Differential Equations, 2010, 248(11): 2768-2799 [8] Guo Z H, Xin Z P. Analytical solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients and free boundaries. J Differential Equations, 2012, 253(1): 1-19 [9] Hoff D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303(1): 169-181 [10] Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math, 1991, 51(4): 887-898 [11] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 38(4): 861-915 [12] Hong G Y, Zhu C J. Optimal decay rates on compressible Navier-Stokes equations with degenerate viscosity and vacuum. J Math Pures Appl, 2019, 124(9): 1-29 [13] Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density-dependent viscosity. Math Nachr, 1998, 190(1): 169-183 [14] Jiang S, Xin Z P, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl Anal, 2005, 12(3): 239-251 [15] Kawashima S, Nishida T. Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytrpic gases. J Math Kyoto Univ, 1981, 21(4): 825-837 [16] Ladyzhenskaia O, Solonnikov V, Ural'tseva N. Linear and Quasi-linear Equations of Parabolic Type. Providence: Amer Math Soc, 1968 [17] Luo T, Xin Z P, Yang T. Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J Math Anal, 2000, 31(6): 1175-1191 [18] Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discrete Contin Dyn Syst, 1998, 4(1): 1-32 [19] Makina T. On a local existence theorem for the evolution equations of gaseous stars. Stud Appl Math, 1986, 18: 459-479 [20] Nishida T. Equations of fluid dynamics-free surface problems. Comm Pure Appl Math, 1986, 39(S1): 221-238 [21] Okada M, Matušu-Nečasová Š, Makino T. Free boundary problem for the equation of one dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII Sci Mat, 2002, 48(1): 1-20 [22] Okada M. Free boundary problem for the equation of one dimensional motion of viscous gas. Japan J Appl Math, 1989, 6(1): 161-177 [23] Okada M, Makino T. Free boundary problem for the equation of spherically symmetrical motion of viscous gas. Japan J Appl Math, 1993, 10(2): 219-235 [24] Qin X L, Yao Z A, Zhao H Z. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Comm Pure Appl Anal, 2008, 7(2): 373-381 [25] Vong S W, Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum II. J Differential Equations, 2003, 192(2): 475-501 [26] Xin Z P. Zero dissipation limit to rarefaction waves for one-dimensional Navier-Stokes equations for compressible isentropic gases. Comm Pure Appl Math, 1993, 46(5): 621-665 [27] Xin Z P. Blow-up of smooth solutions to the comprssible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51(3): 229-240 [28] Yang T, Zhao H J. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscocity. J Diffrential Equations, 2002, 184(1): 163-184 [29] Yang T, Yao Z A, Zhu C J. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Partial Differential Equations, 2001, 26(5/6): 965-981 [30] Yuen M W. Analytical solutions to the Navier-Stokes equations. J Math Phys, 2008, 49(11): 113102 [31] Yuen M W. Analytical blowup solutions to the 2-dimensional isothermal Euler-Poisson equations of gaseous stars. J Math Anal Appl, 2008, 341(1): 445-456 [32] Yeung L H, Yuen M W. Analytical solutions to the Navier-Stokes equations with density-dependent viscosity and with pressure. J Math Phys, 2009, 50(8): 083101 [33] Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002, 230(2): 329-363 [34] Zhu C J. Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Math Phys, 2010, 293(1): 279-299 |