[1] Baranger C, Boudin L, Jabin P-E, Mancini S. A modeling of biospray for the upper airways. ESAIM Proc, 2005, 14: 41-47 [2] Baranger C, Desvillettes L. Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions. J Hyperbolic Differ Equ, 2006, 3(1): 1-26 [3] Berres S Bürger R, Karlsen K H, Tory E M. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J Appl Math, 2003, 64(1): 41-80 [4] Berres S Bürger R, Tory E M. Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures. Comput Vis Sci, 2004, 6(2/3): 67-74 [5] Bresch D, Desjardins B. On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models. J Math Pures Appl, 2006, 86(4): 362-368 [6] Bresch D, Desjardins B. On the existence of global weak soutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J Math Pures Appl, 2007, 87(1): 57-90 [7] Bresch D, Desjardins B, Lin C-K. On some compressible fluid models: Korteweg, lubrication, shallow water systems. Comm Partial Differential Equations, 2003, 28(3/4): 843-868 [8] Brull S, Méhats F. Derivation of viscous correction terms for the isothermal quantum Euler model. Z Angew Math Mech, 2010, 90(3): 219-230 [9] Bürger R, Wendland W L, Concha F. Model equations for gravitational sedimentation-consolidation processes. Z Angew Math Mech, 2000, 80(2): 79-92 [10] Cao W, Jiang P. Global bounded weak entropy solutions to the Euler-Vlasov equations in fluid-particle system. SIAM J Math Anal, 2021, 53(4): 3958-3984 [11] Carrillo J A, Goudon T. Stability and asymptotic analysis of a fluid-particle interaction model. Comm Partial Differential Equations, 2006, 31(7/9): 1349-1379 [12] Chae M, Kang K, Lee J. Global classical solutions for a compressible fluid-particle interaction model. J Hyperbolic Differ Equ, 2013, 10(3): 537-562 [13] Choi Y-P, Jung J. Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain. Math Models Methods Appl Sci, 2021, 31(11): 2213-2295 [14] Choi Y-P, Jung J. Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity. AIMS Ser Appl Math, 2020, 10: 145-163 [15] Duan R, Liu S. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinet Relat Models, 2013, 6(4): 687-700 [16] Gisclon M, Lacroix-Violet I. About the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal, 2015, 128: 106-121 [17] Jüngel A. Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42(3): 1025-1045 [18] Jüngel A. Effective velocity in compressible Navier-Stokes equations with third-order derivatives. Nonlinear Anal, 2011, 74(8): 2813-2818 [19] Karper T K, Mellet A, Trivisa K. Existence of weak solutions to kinetic flocking models. SIAM J Math Anal, 2013, 45(1): 215-243 [20] Lacroix-Violet I, Vasseur A. Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit. J Math Pures Appl, 2018, 114(9): 191-210 [21] Li F, Li Y. Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain. Commun Pure Appl Anal, 2021, 20(10): 3583-3604 [22] Li F, Li Y, Sun B.Global weak solutions and asymptotic analysis for a kinetic-fluid model with a heterogeneous friction force. preprint [23] Li F, Mu Y, Wang D. Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: global existence near the equilibrium and large time behavior. SIAM J Math Anal, 2017, 49(2): 984-1026 [24] Li H-L, Shou L-Y. Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system. J Differential Equations, 2021, 280: 841-890 [25] Li H-L, Shou L-Y. Global weak solutions for compressible Navier-Stokes-Vlasov-Fokker-Planck system. Commun Math Res, 2023, 39(1): 136-172 [26] Li Y. Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data. Z Angew Math Phys, 2021, 72(2): Art. 51 [27] Li Y, Sun B. Global weak solutions to a quantum kinetic-fluid model with large initial data. Nonlinear Analysis: Real World Applications, 2023, 71: Art 103822 [28] Mellet A, Vasseur A. Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations. Math Models Methods Appl Sci, 2007, 17(7): 1039-1063 [29] Mellet A, Vasseur A. Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations. Comm Math Phys, 2008, 281(3): 573-596 [30] Mucha P-B Pokorný M, Zatorska E. Chemically reacting mixtures of degenerated parabolic setting. J Math Phys, 2013, 54(7): 311-341 [31] Oron A, Davis S-H, Bankoff S-G. Long-scale evolution of thin liquid films. Rev Mod Phys, 1997, 69: 931-980 [32] Sartory W K. Three-component analysis of blood sedimentation by the method of characteristics. Math Biosci, 1977, 33(1/2): 145-165 [33] Simon J. Compact sets in the space $L^p(0, T;B)$. Ann Math Pure Appl, 1986, 146: 65-96 [34] Spannenberg A, Galvin K P. Continuous differential sedimentation of a binary suspension. Chem Engrg Aust, 1996, 21: 7-11 [35] Tang T, Niu C.Global existence of weak solutions to the quantum Navier-Stokes equations (in Chinese). Acta Mathematica Scientia, 2022, 42A(2): 387-400 [36] Vasseur A, Yu C. Global weak solutions to the compressible quantum Navier-Stokes equations with damping. SIAM J Math Anal, 2016, 48(2): 1489-1511 [37] Williams F A. Spray combustion and atomization. Physics of Fluids, 1958, 1(6): 541-555 |