[1] Bracci F. Shearing process and an example of a bounded support function in $S^0(\mathbb{B}^2)$. Comput Methods Funct Theory, 2015, 15: 151-157 [2] Bracci F, Graham I, Hamada H, Kohr G. Variation of Loewner chains, extreme and support points in the class $S^0$ in higher dimensions. Constr Approx, 2016, 43: 231-251 [3] Cartan H.Sur la possibilitéd'étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes//Montel P, Ed. Lecons sur les Fonctions Univalentes ou Multivalentes. Paris: Gauthier-Villars, 1933 [4] Elin M, Shoikhet D.Semigroups with boundary fixed points on the unit Hilbert ball and spirallike mappings//Geometric Function Theory in Several Complex Variables. Beijing: World Scientific, 2004: 82-117 [5] Fekete M, Szegö G. Eine Bemerkunguber ungerade schlichte Funktionen. J Lond Math Soc, 1933, 8: 85-89 [6] Gong S. The Bieberbach Conjecture.Providence, RI: Amer Math Soc International Press, 1999 [7] Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canadian J Math, 2002, 54: 324-351 [8] Graham I, Kohr G.Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003 [9] Graham I, Hamada H, Honda T, Kohr G, Shon K H. Growth, distortion and coefficient bounds for Carathéodory families in $\mathbb{C}^n$ and complex Banach spaces. J Math Anal Appl, 2014, 416: 449-469 [10] Graham I, Hamada H, Kohr G, Kohr M. Support points and extreme points for mappings with $A$-parametric representation in $\mathbb{C}^n$. J Geom Anal, 2016, 26: 1560-1595 [11] Graham I, Hamada H, Kohr G, Kohr M. Bounded support points for mappings with $g$-parametric representation in $\mathbb{C}^2$. J Math Anal Appl, 2017, 454: 1085-1105 [12] Guo S T, Xu Q H. On the coefficient inequality for a subclass of starlike mappings in several complex variables. Chinese Quarterly Journal of Mathematics, 2018, 33: 98-110 [13] Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317: 302-319 [14] Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin Ann Math Series B, 2008, 29: 353-368 [15] Hamada H, Kohr G. Support points for families of univalent mappings on bounded symmetric domains. Sci China Math, 2020, 63(12): 2379-2398 [16] Hamada H, Kohr G, Kohr M. The Fekete-Szegö problem for starlike mappings and nonlinear resolvents of the Carathéodory family on the unit balls of complex Banach spaces. Anal Math Phys, 2021, 11: Art 115 [17] Koepf W. On the Fekete-Szegö problem for close-to-convex functions. Proc Amer Math Soc, 1987, 101: 89-95 [18] Kohr G. On some best bounds for coefficients of several subclasses of biholomorphic mappings in $\mathbb{C}^n$. Complex Variables, 1998, 36: 261-284 [19] Leung Y. Successive coefficients of starlike functions. Bull London Math Soc, 1973, 10: 193-196 [20] Liczberski P. On the subordination of holomorphic mappings in $\mathbb{C}^n$. Demonstratio Math, 1986, 19: 1-9 [21] Liu M S, Wu F. Sharp inequalities of homogeneousexpansions of almost starlike mappings of order alpha. Bulletin of the Malaysian Math Sciences Society, 2019, 42: 133-151 [22] Liu X S, Liu T S.The sharp estimates for each item in the homogeneous polynomial expansions of a subclass of close-to-convex mappings (in Chinese). Sci Sin Math, 2010, 40(11): 1079-1090 [23] Liu X S, Liu T S, Xu Q H. A proof of a weak version of the Bieberbach conjecture in several complex variables. Sci China Math, 2015, 58: 2531-2540 [24] Pfaltzgraff J A, Suffridge T J. Close-to-starlike holomorphic functions of several variables. Pacific J Math, 1975, 57: 271-279 [25] Roper K, Suffridge T J. Convexity properties of holomorphic mappings in $\mathbb{C}^n$. Trans Amer Math Soc, 1999, 351: 1803-1833 [26] Suffridge T J.Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions//Complex Analysis: Proceedings of the Conference held at the University of Kentucky, May 18-22, 1976. Berlin: Springer, 1977: 146-159 [27] Xu Q H, Liu T S. On coefficient estimates for a class of holomorphic mappings. Sci China Ser A-Math, 2009, 52: 677-686 [28] Xu Q H, Liu T S. On the Fekete and Szegö problem for the class of starlike mappings in several complex variables. Abstr Appl Anal, 2014, ID 807026 [29] Xu Q H, Liu T S, Liu X S. Fekete and Szegö problem in one and higher dimensions. Sci China Math, 2018, 61: 1775-1788 [30] Xu Q H. A refinement of the coefficient inequalities for a subclass of starlike mappings in several complex variables. Results Math, 2019, 74(4): Art 156 [31] Ye Z Q. On the successive coefficients of close-to-convex functions. J Math Anal Appl, 2003, 283: 689-695 |