[1] Bahmandoust P, Latifi D. Naturally reductive homogeneous $(\alpha,\beta)$ spaces. Int J Geom Methods Mod Phys, 2020, 17(8): 2050117 [2] Bao D, Chern S S, Shen Z.An Introduction to Riemann-Finsler Geometry. New York: Springer-Verlag, 2000 [3] Berndt J, Vanhecke L. Geometry of weakly symmetric spaces. J Math Soc Jap, 1996, 48: 745-760 [4] Cheng X, Shen Z.Finsler Geometry: An Approach via Randers Spaces. Berlin: Springer-Verlag, 2012 [5] Chern S S, Shen Z. Riemann-Finsler Geometry. Singapore: World Scientific Publishers, 2004 [6] Deng S. The S-curvature of homogeneous Randers spaces. Differ Geom Appl, 2009, 27(1): 75-84 [7] Deng S. Homogeneous Finsler Geometry. New York: Springer, 2012 [8] Deng S, Hou Z. Invariant Finsler metrics on homogeneous manifolds. J Phys A, 2004, 37(34): 8245-8253 [9] Deng S, Hou Z. Naturally reductive homogeneous Finsler spaces. Manuscripta Math, 2010, 131(1/2): 215-229 [10] Deng S, Hou Z. The group of isometries of a Finsler space. Pac J Math, 2002, 207(1): 149-155 [11] Deng S, Wang X. The S-curvature of homogeneous $(\alpha, \beta)$-metrics. Balk J Geom Appl, 2010, 15(2): 39-48 [12] Deng S, Xu M. $(\alpha_1, \alpha_2)$-metrics and Clifford-Wolf homogeneity. Journal of Geometric Analysis, 2016, 26(3): 2282-2321 [13] D'Atri J E, Ziller W. Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Providence, RI: Amer Math Soc, 1979 [14] Gordon C. Naturally reductive homogeneous Riemannian manifolds. Can J Math, 1985, 37: 467-487 [15] Gray A. Riemannian manifolds with geodesic symmetries of order 3. J Differential Geom, 1972, 7: 343-369 [16] Huang L. On the fundamental equations of homogeneous Finsler spaces. Differential Geom Appl, 2015, 40: 187-208 [17] Li M, Zhang L. Properties of Berwald scalar curvature. Front Math China, 2020, 15(6): 1143-1153 [18] Kaplan A. On the geometry of groups of Heisenberg type. Bull London Math Soc, 1983, 15(1): 35-42 [19] Kobayashi S, Nomizu K.Foundations of Differential Geometry. New York: Interscience Publishers, 1969 [20] Kowalski O.Spaces with Volume-preserving geodesic symmetries and related classes of Riemannian manifolds. Fascicolo Speciale: Mat Univ e Politec Torino, 1983 [21] Kowalski O, Vanhecke L. Riemannian manifold with homogeneous geodesics. Boll Unione Math Ital, 1991, 7B(5): 189-246 [22] Latifi D. Homogeneous geodesic on homogeneous Finsler spaces. J Geom Phys, 2007, 57: 1421-1433 [23] Matsumoto M. Theory of Finsler spaces with $(\alpha,\beta)$-metrics. Rep Math Phys, 1992, 31: 43-83 [24] Myers S B, Steenrod N. The group of isometries of a Riemannian manifold. Ann of Math, 1939, 40: 400-416 [25] Parhizkar M. Naturally reductive homogeneous Finsler spaces. Vietnam J Math, 2022, 50: 205-215 [26] Randers G. On an asymmetrical metric in the four-space of general relativity. Phys Rev, 1941, 59: 195-199 [27] Shen Z. Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128: 306-328 [28] Shen Z.Lectures on Finsler Geometry. Singapore: World Scientific, 2001 [29] Szabó Z I. Positive definie Berwald spaces. Tensor (NS), 1981, 38: 25-39 [30] Wang K, Zhong C. S-curvature and E-curvature of invariant $(\alpha, \beta)$-metric on homogeneous space. Differential Geom Appl, 2021, 76: 101760 [31] Wolf J A. The geometry and structure of isotropy irreducible homogeneous space. Acta Math, 1968, 120: 59-148 [32] Xu M. The Minkowski norm and Hessian isometry induced by an isoparametric foliation on the unit sphere. Sci China Math, 2022, 65(7): 1485-1516 [33] Xu M, Deng S. Killing frames and S-curvature of homogeneous Finsler spaces. Glasgow Math J, 2015, 57: 457-464 [34] Xu M, Deng S. The Landsberg equation of a Finsler space. Ann Sc Norm Super Pisa Cl Sci, 2021, 22(5): 31-51 [35] Xu M, Matveev V S. Proof of Laugwitz conjecture and Landsberg unicorn conjecture for Minkowski norms with $SO(k)\times SO(n-k)$-symmetry. Cand J Math, 2022, 74(5): 1486-1516 [36] Zhang S, Yan Z, Deng S.Naturally reductive homogeneous $(\alpha, \beta)$ spaces. preprint [37] Ziller W.Weakly symmetric spaces//Gindikin S, Simon B. Topics in Geometry: In Memory of Joseph D'Atri. Boston: Birkháuser, 1996 |